902 resultados para directed polymers in random environment
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
OBJECTIVE: To describe the investigation of a sylvatic yellow fever outbreak in the state of Sao Paulo and the main control measures undertaken.METHODS: This is a descriptive study of a sylvatic yellow fever outbreak in the Southwestern region of the state from February to April 2009. Suspected and confirmed cases in humans and in non-human primates were evaluated. Entomological investigation in sylvatic environment involved capture at ground level and in the tree canopy to identify species and detect natural infections. Control measures were performed in urban areas to control Aedes aegypti. Vaccination was directed at residents living in areas with confirmed viral circulation and also at nearby cities according to national recommendation.RESULTS: Twenty-eight human cases were confirmed (39.3% case fatality rate) in rural areas of Sarutaia, Piraju, Tejupa, Avare, and Buri. The deaths of 56 non-human primates were also reported, 91.4% were Allouatta sp. Epizootics was confirmed in two non-human primates in the cities of Itapetininga and Buri. A total of 1,782 mosquitoes were collected, including Haemagogus leucocelaenus, Hg. janthinomys/capricornii, and Sabethes chloropterus, Sa. purpureus and Sa. undosus. Yellow fever virus was isolated from a group of Hg. Leucocelaenus from Buri. Vaccination was carried out in 49 cities, with a total of 1,018,705 doses. Nine serious post-vaccination adverse events were reported.CONCLUSIONS: The cases occurred between February and April 2009 in areas with no recorded yellow fever virus circulation in over 60 years. The outbreak region occurred outside the original recommended vaccination area with a high percentage of susceptible population. The fast adoption of control measures interrupted the human transmission within a month and the confirmation of viral circulation in humans, monkeys and mosquitoes. The results allowed the identification of new areas of viral circulation but further studies are required to clarify the dynamics of the spread of this disease.
Resumo:
The biodegradability properties of poly(epsilon-caprolactone) (PCL) and modified adipate-starch (AS) blends, using Edenol-3203 (E) as a starch plasticizer, were investigated in laboratory by burial tests of the samples in previously analyzed agricultural soil. The biodegradation process was carried out using the respirometric test according to ASTM D 5988-96, and the mineralization was followed by both variables such as carbon dioxide evolution and mass loss. The results indicated that the presence of AS-E accelerated the biodegradation rate as expected.
Resumo:
Given that the auditory system is rather well developed at the end of the third trimester of pregnancy, it is likely that couplings between acoustics and motor activity can be integrated as early as at the beginning of postnatal life. The aim of the present mini-review was to summarize and discuss studies on early auditory-motor integration, focusing particularly on upper-limb movements (one of the most crucial means to interact with the environment) in association with auditory stimuli, to develop further understanding of their significance with regard to early infant development. Many studies have investigated the relationship between various infant behaviors (e.g., sucking, visual fixation, head turning) and auditory stimuli, and established that human infants can be observed displaying couplings between action and environmental sensory stimulation already from just after birth, clearly indicating a propensity for intentional behavior. Surprisingly few studies, however, have investigated the associations between upper-limb movements and different auditory stimuli in newborns and young infants, infants born at risk for developmental disorders/delays in particular. Findings from studies of early auditory-motor interaction support that the developing integration of sensory and motor systems is a fundamental part of the process guiding the development of goal-directed action in infancy, of great importance for continued motor, perceptual, and cognitive development. At-risk infants (e.g., those born preterm) may display increasing central auditory processing disorders, negatively affecting early sensorymotor integration, and resulting in long-term consequences on gesturing, language development, and social communication. Consequently, there is a need for more studies on such implications.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Dapsone (DAP) is a synthetic sulfone drug with bacteriostatic activity, mainly against Mycobacterium leprae. In this study we have investigated the interactions of DAP with cyclodextrins, 2-hydroxypropyl-beta-cyclodextrin (HP beta CD) and beta-cyclodextrin (beta CD), in the presence and absence of water-soluble polymers, in order to improve its solubility and bioavailability. Solid systems DAP/HP beta CD and DAP/beta CD, in the presence or absence of polyvinylpyrrolidone (PVP K30) or hydroxypropyl methylcellulose (HPMC), were prepared. The binary and ternary systems were evaluated and characterized by SEM, DSC, XRD and NMR analysis as well as phase solubility assays, in order to investigate the interactions between DAP and the excipients in aqueous solution. This study revealed that inclusion complexes of DAP and cyclodextrins (HP beta CD and beta CD) can be produced in order to improve DAP solubility and bioavailability in the presence or absence of polymers (PVP K30 and HPMC). The more stable inclusion complex was obtained with HP beta CD, and consequently HP beta CD was more efficient in improving DAP solubility than beta CD, and the addition of polymers had no influence on DAP solubility or on the stability of the DAP/CDs complexes.
Resumo:
Introduction: This study aimed to isolate and identify Candida spp. from the environment, health practitioners, and patients with the presumptive diagnosis of candidiasis in the Pediatric Unit at the Universitary Hospital of the Jundiai Medical College, to verify the production of enzymes regarded as virulence factors, and to determine how susceptible the isolated samples from patients with candidiasis are to antifungal agents. Methods: Between March and November of 2008 a total of 283 samples were taken randomly from the environment and from the hands of health staff, and samples of all the suspected cases of Candida spp. hospital-acquired infection were collected and selected by the Infection Control Committee. The material was processed and the yeast genus Candida was isolated and identified by physiological, microscopic, and macroscopic attributes. Results: The incidence of Candida spp. in the environment and employees was 19.2%. The most frequent species were C. parapsilosis and C. tropicalis among the workers, C. guilliermondii and C. tropicalis in the air, C. lusitanae on the contact surfaces, and C. tropicalis and C. guilliermondii in the climate control equipment. The college hospital had 320 admissions, of which 13 (4%) presented Candida spp. infections; three of them died, two being victims of a C. tropicalis infection and the remaining one of C. albicans. All the Candida spp. in the isolates evidenced sensitivity to amphotericin B, nystatin, and fluconazole. Conclusions: The increase in the rate of hospital-acquired infections caused by Candida spp. indicates the need to take larger measures regarding recurrent control of the environment.
Resumo:
INTRODUCTION: This study aimed to isolate and identify Candida spp. from the environment, health practitioners, and patients with the presumptive diagnosis of candidiasis in the Pediatric Unit at the Universitary Hospital of the Jundiaí Medical College, to verify the production of enzymes regarded as virulence factors, and to determine how susceptible the isolated samples from patients with candidiasis are to antifungal agents. METHODS: Between March and November of 2008 a total of 283 samples were taken randomly from the environment and from the hands of health staff, and samples of all the suspected cases of Candida spp. hospital-acquired infection were collected and selected by the Infection Control Committee. The material was processed and the yeast genus Candida was isolated and identified by physiological, microscopic, and macroscopic attributes. RESULTS: The incidence of Candida spp. in the environment and employees was 19.2%. The most frequent species were C. parapsilosis and C. tropicalis among the workers, C. guilliermondii and C. tropicalis in the air, C. lusitanae on the contact surfaces, and C. tropicalis and C. guilliermondii in the climate control equipment. The college hospital had 320 admissions, of which 13 (4%) presented Candida spp. infections; three of them died, two being victims of a C. tropicalis infection and the remaining one of C. albicans. All the Candida spp. in the isolates evidenced sensitivity to amphotericin B, nystatin, and fluconazole. CONCLUSIONS: The increase in the rate of hospital-acquired infections caused by Candida spp. indicates the need to take larger measures regarding recurrent control of the environment.
Resumo:
Persistent organic pollutants (POPs) is a group of chemicals that are toxic, undergo long-range transport and accumulate in biota. Due to their persistency the distribution and recirculation in the environment often continues for a long period of time. Thereby they appear virtually everywhere within the biosphere, and poses a toxic stress to living organisms. In this thesis, attempts are made to contribute to the understanding of factors that influence the distribution of POPs with focus on processes in the marine environment. The bioavailability and the spatial distribution are central topics for the environmental risk management of POPs. In order to study these topics, various field studies were undertaken. To determine the bioavailable fraction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated naphthalenes (PCNs), and polychlorinated biphenyls (PCBs) the aqueous dissolved phase were sampled and analysed. In the same samples, we also measured how much of these POPs were associated with suspended particles. Different models, which predicted the phase distribution of these POPs, were then evaluated. It was found that important water characteristics, which influenced the solid-water phase distribution of POPs, were particulate organic matter (POM), particulate soot (PSC), and dissolved organic matter (DOM). The bioavailable dissolved POP-phase in the water was lower when these sorbing phases were present. Furthermore, sediments were sampled and the spatial distribution of the POPs was examined. The results showed that the concentration of PCDD/Fs, and PCNs were better described using PSC- than using POM-content of the sediment. In parallel with these field studies, we synthesized knowledge of the processes affecting the distribution of POPs in a multimedia mass balance model. This model predicted concentrations of PCDD/Fs throughout our study area, the Grenlandsfjords in Norway, within factors of ten. This makes the model capable to validate the effect of suitable remedial actions in order to decrease the exposure of these POPs to biota in the Grenlandsfjords which was the aim of the project. Also, to evaluate the influence of eutrophication on the marine occurrence PCB data from the US Musselwatch and Benthic Surveillance Programs are examined in this thesis. The dry weight based concentrations of PCB in bivalves were found to correlate positively to the organic matter content of nearby sediments, and organic matter based concentrations of PCB in sediments were negatively correlated to the organic matter content of the sediment.
Resumo:
During this work, done mainly in the laboratories of the department of Industrial Chemistry and Materials of the University of Bologna but also in the laboratories of the Carnegie Mellon University in collaboration with prof. K. Matyjaszewski and at the university of Zaragoza in collaboration with prof. J. Barberá, was focused mainly on the synthesis and characterization of new functional polymeric materials. In the past years our group gained a deep knowledge about the photomodulation of azobenzene containing polymers. The aim of this thesis is to push forward the performances of these materials by the synthesis of well defined materials, in which, by a precise control over the macromolecular structures, better or even new functionality can be delivered to the synthesized material. For this purpose, besides the rich photochemistry of azoaromatic polymers that brings to the application, the control offered from the recent techniques of controlled radical polymerization, ATRP over all, gives an enormous range of opportunity for the developing of a new generation of functional materials whose properties are determinate not only by the chemical nature of the functional center (e.g. azoaromatic chromophore) but are tuned and even amplified by a synergy with the whole macromolecular structure. Old materials in new structures. In this contest the work of this thesis was focused mainly on the synthesis and characterization of well defined azoaromatic polymers in order to establish, for the first time, precise structure-properties correlation. In fact a series of well defined different azopolymers, chiral and achiral, with different molecular weight and highly monodisperse were synthesized and their properties were studied, in terms of photoexpansion and photomodulation of chirality. We were then able to study the influence of the macromolecular structure in terms of molecular weight and ramification on the studied properties. The huge amount of possibility offered by the tailoring of the macromolecular structure were exploited for the synthesis of new cholesteric photochromic polymers that can be used as a smart label for the certification of the thermal history of any thermosensitive product. Finally the ATRP synthesis allowed us to synthesize a total new class of material, named molecular brushes: a flat surface covered with an ultra thin layer of polymeric chain covalently bond onto the surface from one end. This new class of materials is of extreme interest as they offer the possibility to tune and manage the interaction of the surface with the environment. In this contest we synthesized both azoaromatic surfaces, growing directly the polymer from the surface, and mixed brushes: surfaces covered with incompatible macromolecules. Both type of surfaces acts as “smart” surfaces: the first it is able to move the orientation of a LC cell by simply photomodulation and, thanks to the robustness of the covalent bond, can be used as a command surface overcoming all the limitation due to the dewetting of the active layer. The second type of surface, functionalized by a grafting-to method, can self assemble the topmost layer responding to changed environmental conditions, exposing different functionality according to different environment.
Resumo:
Naphthenic acids (NAs) are an important group of organic pollutants mainly found in hydrocarbon deposits. Although these compounds are toxic, recalcitrant, and persistent in the environment, we are just learning the diversity of microbial communities involved in NAs- degradation and the mechanisms by which NAs are biodegraded. Studies have shown that naphthenic acids are susceptible to biodegradation, which decreases their concentration and reduces toxicity. Nevertheless, little is still known about their biodegradability. The present PhD Thesis’s work is aimed to study the biodegradation of simple model NAs using bacteria strains belonging to the Rhodococcus genus. In particular, Rh. sp. BCP1 and Rh. opacus R7 were able to utilize NAs such as cyclohexane carboxylic acid and cyclopentane carboxylic acid as the sole carbon and energy sources, even at concentrations up to 1000 mg/L. The presence of either substituents or longer carboxylic acid chains attached to the cyclohexane ring negatively affected the growth by pure bacterial cultures. Moreover, BCP1 and R7 cells incubated in the presence of CHCA or CPCA show a general increase of saturated and methyl-substituted fatty acids in their membrane, while the cis-mono-unsaturated ones decrease, as compared to glucose-grown cells. The observed lipid molecules modification during the growth in the presence of NAs is suggested as a possible mechanism to decrease the fluidity of the cell membrane to counteract NAs toxicity. In order to further evaluate this toxic effect on cell features, the morphological changes of BCP1 and R7 cells were also assessed through Transmission Electron Microscopy (TEM), revealing interesting ultrastructural changes. The induction of putative genes, and the construction of a random transposon mutagenesis library were also carried out to reveal the mechanisms by which these Rhodococcus strains can degrade toxic compounds such as NAs.
Resumo:
The recent increase in the amount of nanoparticles incorporated into commercial products is accompanied by a rising concern of the fate of these nanoparticles. Once released into the environment, it is inevitable that the nanoparticles will come into contact with the soil, introducing them to various routes of environmental contamination. One route that was explored in this research was the interaction between nanoparticles and clay minerals. In order to better define the interactions between clay minerals and positively charged nanoparticles, in situ atomic force microscopy (AFM) was utilized. In situ AFM experiments allowed interactions between clay minerals and positively charged nanoparticles to be observed in real time. The preliminary results demonstrated that in situ AFM was a reliable technique for studying the interactions between clay minerals and positively charged nanoparticles and showed that the nanoparticles affected the swelling (height) of the clay quasi-crystals upon exposure. The preliminary AFM data were complemented by batch study experiments which measured the absorbance of the nanoparticle filtrate after introduction to clay minerals in an effort to better determine the mobility of the positively charged nanoparticles in an environment with significant clay contribution. The results of the batch study indicated that the interactions between clay minerals and positively charged nanoparticles were size dependent and that the interactions of the different size nanoparticles with the clay may be occurring to different degrees. The degree to which the different size nanoparticles were interacting with the clay was further probed using FTIR (Fourier transform infrared) spectroscopy experiments. The results of these experiments showed that interactions between clay minerals and positively charged nanoparticles were size dependent as indicated by a change in the FTIR spectra of the nanoparticles upon introduction to clay.
Resumo:
Our understanding of regional filling of the lung and regional ventilation distribution is based on studies using stepwise inhalation of radiolabelled tracer gases, magnetic resonance imaging and positron emission tomography. We aimed to investigate whether these differences in ventilation distribution at different end-expiratory levels (EELs) and tidal volumes (V (T)s) held also true during tidal breathing. Electrical impedance tomography (EIT) measurements were performed in ten healthy adults in the right lateral position. Five different EELs with four different V (T)s at each EEL were tested in random order, resulting in 19 combinations. There were no measurements for the combination of the highest EEL/highest V (T). EEL and V (T) were controlled by visual feedback based on airflow. The fraction of ventilation directed to different slices of the lung (VENT(RL1)-VENT(RL8)) and the rate of the regional filling of each slice versus the total lung were analysed. With increasing EEL but normal tidal volume, ventilation was preferentially distributed to the dependent lung and the filling of the right and left lung was more homogeneous. With increasing V (T) and maintained normal EEL (FRC), ventilation was preferentially distributed to the dependent lung and regional filling became more inhomogeneous (p < 0.05). We could demonstrate that regional and temporal ventilation distribution during tidal breathing was highly influenced by EEL and V (T).