990 resultados para delta 13C, calcite
Resumo:
The mid-Cretaceous is widely considered the archetypal ice-free greenhouse interval in Earth history, with a thermal maximum around Cenomanian-Turonian boundary time (ca. 90 Ma). However, contemporaneous glaciations have been hypothesized based on sequence stratigraphic evidence for rapid sea-level oscillation and oxygen isotope excursions in records generated from carbonates of questionable preservation and/or of low resolution. We present new oxygen isotope records for the mid-Cenomanian Demerara Rise that are of much higher resolution than previously available, taken from both planktic and benthic foraminifers, and utilizing only extremely well preserved glassy foraminifers. Our records show no evidence of glaciation, calling into question the hypothesized ice sheets and rendering the origin of inferred rapid sea-level oscillations enigmatic. Simple mass-balance calculations demonstrate that this Cretaceous sea-level paradox is unlikely to be explained by hidden ice sheets existing below the limit of d18O detection.
Resumo:
Carbon cycling is an important but poorly understood process on passive continental margins. In this study, we use the ionic and stable isotopic composition of interstitial waters and the petrology, mineralogy, and stable isotopic composition of authigenic carbonates collected from Ocean Drilling Program (ODP) Leg 174A (Sites 1071 and 1072) to constrain the origin of the carbonates and the evolution of methane on the outer New Jersey shelf. The pore fluids of the New Jersey continental shelf are characterized by (1) a fresh-brackish water plume, and (2) organic matter degradation reactions, which proceed through sulfate reduction. However, only minor methanogenesis occurs. The oxygen isotopic composition of the pore fluids supports a meteoric origin of the low salinity fluids. Authigenic carbonates are found in nodules, thin (~1-cm) layers, and carbonate cemented pavements. Siderite is the most common authigenic carbonate, followed by dolomite and calcite. The oxygen isotopic composition of the authigenic carbonates, i.e. 1.3-6.5 per mil PeeDee Belemnite (PDB), indicates an origin in marine pore fluids. The carbon isotopic composition of dolomite cements range from -16.4 to -8.8 per mil PDB, consistent with formation within the zone of sulfate reduction. Siderite d13C values show a greater range (-17.67-16.4 per mil), but are largely positive (mean=2.8 per mil) and are interpreted to have formed throughout the zone of methanogenesis. In contrast, calcite d13C values are highly negative (as low as -41.7 per mil)and must have formed from waters with a large component of dissolved inorganic carbon derived from methane oxidation. Pore water data show that despite complete sulfate reduction, methanogenesis appears not to be an important process presently occurring in the upper 400 m of the outer New Jersey shelf. In contrast, the carbon isotopic composition of the siderites and calcites document an active methanogenic zone during their formation. The methane may have been either oxidized or vented from shelf sediments, perhaps during sea-level fluctuations. If this unaccounted and variable methane flux is an areally important process during Neogene sea-level fluctuations, then it likely plays an important role in long-term carbon cycling on passive continental margins
Resumo:
A blue-green smectite (iron-rich saponite) and green mica (celadonite) are the dominant sheet silicates in veins within the 10.5 m of basalt cored during DSDP Leg 34, Site 32l, in the Nazca plate. Oxygen isotopic analyses of these clays, and associated calcite, indicate a formation temperature of <25°C. Celadonite contains appreciable Fe2O3, K2O and SiO2, intermediate MgO, and very little Al2O3. Celadonite is commonly associated with goethite and hematite, which suggests that this phase formed by precipitation within a dominantly oxygenated environment of components leached from basalt and provided by seawater. A mass balance estimate indicates that celadonite formation can remove no more than 15% of the K annually transported to the oceans by rivers. In contrast, iron-rich saponite containing significant Al2O3 appears to have precipitated from a nonoxidizing, distinctly alkaline fluid containing a high Na/K ratio relative to unmodified seawater. Seawater-basalt interaction at low temperatures, resulting in the formation of celadonite and smectite may explain chemical gradients observed in interstitial waters of sediments overlying basalts.
Resumo:
A downhole decrease in 18O, Mg(2+) and K+, an increase in Ca(2+) and a low 87Sr/86Sr ratio of 0.7067 in the pore fluids of DSDP site 323 were caused principally by the alteration of volcanic material. These chemical and isotopic patterns were produced by the alteration, in order of decreasing importance of: a 60-m thick basal layer of volcanic ash; the underlying basalts; and igneous components in the 640-m thick upper sequence composed largely of terrigenous material. A significant portion of the alteration of the ash in the basal sequence must have occurred before the deposition of the upper sediments, perhaps under the influence of advecting solutions. The rest of the alteration occurred during the deposition of the thick upper sediments. Mass balance considerations and the low d18O values of most of the alteration products suggest that much of the later alteration occurred progressively over the last 13 Myr. The principal alteration products were smectite, potassium feldspar, clinoptilolite and calcite.
Resumo:
In the lower part of DSDP core 53.0, partly recrystallized carbonate sediments and well recrystallized limestone breccias of Oligo-Miocene age are associated with altered volcanic flows, lithified tuffs, and tuff breccias, suggesting that carbonate alteration was the result of thermal metamorphism. However, the oxygen isotope compositions of these carbonates (-3.4 to +0.6 per mil rel. PDB) are not compatible with recrystallization and isotope exchange with sea water at high temperatures. Evaluating the effects of the composition of the water which exchanged with the carbonates and of carbonate-water isotope exchange in closed systems yields the following approximate maximum temperature of recrystallization: limestone breccias, 100°C; calcite veins rimming breccia clasts, 30°C; and unconsolidated sediments overlying the breccias, 20°C. Therefore, the volcanics at site 53.0 must have been emplaced into the primary carbonate sediments at relatively low temperatures. Subsequent carbonate alteration was probably a consequence of chemical changes in ambient pore waters resulting from the submarine weathering of volcanic material.
Resumo:
The magnesium isotope composition of diagenetic dolomites and their adjacent pore fluids were studied in a 250 m thick sedimentary section drilled into the Peru Margin during Ocean Drilling Program (ODP) Leg 201 (Site 1230) and Leg 112 (Site 685). Previous studies revealed the presence of two types of dolomite: type I dolomite forms at ~ 6 m below seafloor (mbsf) due to an increase in alkalinity associated with anaerobic methane oxidation, and type II dolomite forms at focused sites below ~ 230 mbsf due to episodic inflow of deep-sourced fluids into an intense methanogenesis zone. The pore fluid delta 26Mg composition becomes progressively enriched in 26Mg with depth from values similar to seawater (i.e. -0.8 per mil, relative to DSM3 Mg reference material) in the top few meters below seafloor (mbsf) to 0.8 ± 0.2 per mil within the sediments located below 100 mbsf. Type I dolomites have a delta 26Mg of -3.5 per mil, and exhibit apparent dolomite-pore fluid fractionation factors of about -2.6 per mil consistent with previous studies of dolomite precipitation from seawater. In contrast, type II dolomites have delta 26Mg values ranging from -2.5 to -3.0 per mil and are up to -3.6 per mil lighter than the modern pore fluid Mg isotope composition. The enrichment of pore fluids in 26Mg and depletion in total Mg concentration below ~ 200 mbsf is likely the result of Mg isotope fractionation during dolomite formation, The 26Mg enrichment of pore fluids in the upper ~ 200 mbsf of the sediment sequence can be attributed to desorption of Mg from clay mineral surfaces. The obtained results indicate that Mg isotopes recorded in the diagenetic carbonate record can distinguish near surface versus deep formed dolomite demonstrating their usefulness as a paleo-diagenetic proxy.
Resumo:
During drilling in the Gulf of California, diagenetic carbonate rocks were recovered at 7 out of 8 sites. These are primarily dolomites which record 13C isotopic evidence of the incorporation of carbon derived from the decomposition of organic matter. In Hole 479, drilled to a sub-bottom depth of 440 meters on the Guaymas Slope, under a fertile upwelling belt, we recognized an excellent example of deep sea dolomitization in progress. This Quaternary section of organic-carbon- rich, low-carbonate, hemipelagic diatomaceous oozes contains numerous fine-grained, decimeter-thin, episodic beds of dolomite, which show sedimentologic, geochemical, and isotopic evidence of accretion by precipitation below 40 meters sub-bottom in zones of high alkalinity and low sulfate. The beds preserve original sedimentary structures. Carbon-13 varies from +3 to +14 per mil, indicating biogenic CO2 reservoirs related to active methanogenesis. In single beds, 18O values range outwardly from +5 to -7 per mil, reflecting increasing temperature with progressive accretion of dolomite with depth; the values parallel progressive trends in lithification, texture, mineralogy, and fossil preservation. We estimate slow accretion rates on the order of 0.1-0.7 mm/10**3 yr. with burial. Dolomitization does not proceed merely at the expense of nearby nannofossils. Ca and Mg ions must be derived from interstitial waters. The episodic appearance of beds in the sequence seems partly a reflection of latent climate signals. This process of deep sea dolomitization carries implications for hydrocarbon migration, as well as an interpretation of the presence of dolomite in other modern and ancient pelagic to hemipelagic sediment sequences.
Resumo:
The Lower Cretaceous and Miocene sequences of the NW African passive continental margin consist of siliciclastic, volcaniclastic and hybrid sediments. These sediments contain a variety of diagenetic carbonates associated with zeolites, smectite clays and pyrite, reflecting the detrital mineralogical composition and conditions which prevailed during opening of the North Atlantic. In the Lower Cretaceous siliciclastic sediments, siderite (-6 per mil to +0.7per mil d18O PDB, -19.6 per mil to +0.6 per mil d13C PDB) was precipitated as thin layers and nodules from modified marine porewaters with input of dissolved carbon from the alteration of organic matter. Microcrystalline dolomite layers, lenses, nodules and disseminated crystals (-3.0 per mil to +2.5 per mil d18O PDB, -7.2 per mil to +4.9 per mil d13C PDB) predominate in slump and debris-flow deposits within the Lower Miocene sequence. During the opening of the Atlantic, volcanic activity in the Canary Islands area resulted in input of volcaniclastic sediments to the Middle and Upper Miocene sequences. Calcite is the dominant diagenetic carbonate in the siliciclastic-bioclastic-volcaniclastic hybrid and in the volcaniclastic sediments, which commonly contain pore-rimming smectite. Diagenetic calcite (-22 per mil to +1.6 per mil d18O PDB, -35.7 per mil to +0.8 per mil d13C PDB) was precipitated due to the interaction of volcaniclastic and bioclastic grains with marine porewaters. Phillipsite is confined to the alteration of volcaniclastic sediments, whereas clinoptilolite is widely disseminated, occurring essentially within foraminiferal chambers, and formed due to the dissolution of biogenic silica.
Resumo:
Low-temperature hydrothermal alteration of basement from Site 801 was studied through analyses of the mineralogy, chemistry, and oxygen isotopic compositions of the rocks. The more than 100-m section of 170-Ma basement consists of 60 m of tholeiitic basalt separated from the overlying 60 m of alkalic basalts by a >3-m-thick Fe-Si hydrothermal deposit. Four alteration types were distinguished in the basalts: (1) saponite-type (Mg-smectite) rocks are generally slightly altered, exhibiting small increases in H2O, d18O, and oxidation; (2) celadonite-type rocks are also slightly altered, but exhibit uptake of alkalis in addition to hydration and oxidation, reflecting somewhat greater seawater/rock ratios than the saponite type; (3) Al-saponite-type alteration resulted in oxidation, hydration, and alkali and 18O uptake and losses of Ca and Na due to the breakdown of plagioclase and clinopyroxene; and (4) blue-green rocks exhibit the greatest chemical changes, including oxidation, hydration, alkali uptake, and loss of Ca, Na, and Mg due to the complete breakdown of plagioclase and olivine to K-feldspar and phyllosilicates. Saponite- and celadonite-type alteration of the tholeiite section occurred at a normal mid-ocean ridge basalt spreading center at temperatures <20°C. Near- or off-axis intrusion of an alkali basalt magma at depth reinitiated hydrothermal circulation, and the Fe-Si hydrothermal deposit formed from cool (<60°C) distal hydrothermal fluids. Focusing of fluid flow in the rocks immediately underlying the deposit resulted in the extensive alteration of the blue-green rocks at similar temperatures. Al-saponite alteration of the subsequent alkali basalts overlying the deposit occurred at relatively high water/rock ratios as part of the same low-temperature circulation system that formed the hydrothermal deposit. Abundant calcite formed in the rocks during progressive "aging" of the crust during its long history away from the spreading center.
Resumo:
A 13-million-year continuous record of Oligocene climate from the equatorial Pacific reveals a pronounced "heartbeat" in the global carbon cycle and periodicity of glaciations. This heartbeat consists of 405,000-, 127,000-, and 96,000-year eccentricity cycles and 1.2-million-year obliquity cycles in periodically recurring glacial and carbon cycle events. That climate system response to intricate orbital variations suggests a fundamental interaction of the carbon cycle, solar forcing, and glacial events. Box modeling shows that the interaction of the carbon cycle and solar forcing modulates deep ocean acidity as well as the production and burial of global biomass. The pronounced 405,000-year eccentricity cycle is amplified by the long residence time of carbon in the oceans.
Resumo:
Major ice sheets were permanently established on Antarctica approximately 34 million years ago, close to the Eocene/ Oligocene boundary, at the same time as a permanent deepening of the calcite compensation depth in the world's oceans. Until recently, it was thought that Northern Hemisphere glaciation began much later, between 11 and 5million years ago. This view has been challenged, however, by records of ice rafting at high northern latitudes during the Eocene epoch and by estimates of global ice volume that exceed the storage capacity of Antarctica at the same time as a temporary deepening of the calcite compensation depth 41.6 million years ago. Here we test the hypothesis that large ice sheets were present in both hemispheres 41.6 million years ago using marine sediment records of oxygen and carbon isotope values and of calcium carbonate content from the equatorial Atlantic Ocean. These records allow, at most, an ice budget that can easily be accommodated on Antarctica, indicating that large ice sheets were not present in the Northern Hemisphere. The records also reveal a brief interval shortly before the temporary deepening of the calcite compensation depth during which the calcite compensation depth shoaled, ocean temperatures increased and carbon isotope values decreased in the equatorial Atlantic. The nature of these changes around 41.6 million years ago implies common links, in terms of carbon cycling, with events at the Eocene/Oligocene boundary and with the 'hyperthermals' of the Early Eocene climate optimum. Our findings help to resolve the apparent discrepancy between the geological records of Northern Hemisphere glaciation and model results that indicate that the threshold for continental glaciation was crossed earlier in the Southern Hemisphere than in the Northern Hemisphere.
Resumo:
Barremian through uppermost Aptian strata from ODP Hole 641C, located upslope of a tilted fault block on the Galicia margin (northwest Spain), are syn-rift sediments deposited in the bathyal realm and are characterized by rapid sedimentation from turbidity currents and debris flows. Calcarenite and calcirudite turbidites contain shallow-water carbonate, terrigenous, and pelagic debris, in complete or partial Bouma sequences. These deposits contain abraded micritized bioclasts of reefal debris, including rudist fragments. The youngest turbidite containing shallow-water carbonate debris at Site 641 defines the boundary between syn-rift and post-rift sediments; this is also the boundary between Aptian and Albian sediments. Some Aptian turbidites are partially silicified, with pore-filling chalcedony and megaquartz. Adjacent layers of length-fast and -slow chalcedony are succeeded by megaquartz as the final pore-filling stage within carbonate reef debris. Temperatures of formation, calculated from the oxygen isotopic composition of the authigenic quartz, are relatively low for formation of quartz but are relatively warm for shallow burial depths. This quartz cement may be interpreted as a rift-associated precipitate from seawater-derived epithermal fluids that migrated along a fault associated with the tilted block and were injected into the porous turbidite beds. These warm fluids may have cooled rapidly and precipitated silica at the boundaries of the turbidite beds as a result of contact with cooler pore waters. The color pattern in the quartz cement, observed by cathodoluminescence and fluorescence techniques, and changes in the trace lement geochemistry mimic the textural change of the different quartz layers and indicates growth synchronism of the different quartz phases. Fluorescence petrography of neomorphosed low-Mg-calcite bioclasts in the silicified turbidites shows extensive zonation and details of replacive crystal growth in the bioclasts that are not observed by cathodoluminescence. Fluorescence microscopy also reveals a competitive growth history during neomorphism of the adjacent crystals in an altered carbonate bioclast. Barremian-Aptian background pelagic sediments from Hole 641C have characteristics similar to pelagic sediments from the Blake-Bahama Formation described by Jansa et al. (1979) from the western North Atlantic. Sediments at this site differ from the Blake-Bahama Formation type locality in that the Barremian-Aptian pelagic sediments have a higher percentage of dark calcareous claystone and some turbidites are silicified at Site 641. The stable isotopic composition of the pelagic marlstones from Site 641 is similar to those of other Berriasian-Aptian pelagic sediments from the Atlantic.
Resumo:
This report presents mineralogic and geochemical data from Ocean Drilling Program Leg 182 Site 1128 in the Great Australian Bight. Clay mineralogy is dominated by mixed-layer illite-smectite, followed by minor amounts of kaolinite and illite, with intervals of pure smectite. Carbonate mineralogy is exclusively low-Mg calcite, except for one interval of dolomite in lower Oligocene sediments. Carbonate increases significantly in upper Eocene sediments, decreases through the lower Oligocene, then increases again in the Neogene. Quartz is present as a minor component that covaries inversely with carbonate. High-resolution sampling associated with Chron 13 normal (early Oligocene) reveals high-frequency (~23 k.y.) fluctuations in clay mineralogy and carbonate abundance and a positive oxygen and carbon isotope excursion (in bulk carbonates) related to Antarctic glaciation.
Resumo:
An intensive stable isotopic investigation was conducted on sediments recovered from the Great Australian Bight during Ocean Drilling Program Leg 182 at Sites 1127, 1129, and 1131. The sites comprise a transect from the shelf edge to upper slope through a thick sequence of predominately Quaternary cool-water carbonate sediments. Detailed mineralogic and stable isotopic (d18O and d13C) analyses of sediments from a total of 306 samples are presented from all three sites.
Resumo:
A distinctive low-carbonate interval interrupts the continuous limestone-marl alternation of the deep-marine Gorrondatxe section at the early Lutetian (middle Eocene) C21r/C21n Chron transition. The interval is characterized by increased abundance of turbidites and kaolinite, a 3 per mil decline in the bulk d13C record, a >1 per mil decline in benthic foraminiferal d13C followed by a gradual recovery, a distinct deterioration in foraminiferal preservation, high proportions of warm-water planktic foraminifera and opportunistic benthic foraminifera, and reduced trace fossil and benthic foraminiferal diversity, thus recording a significant environmental perturbation. The onset of the perturbation correlates with the C21r-H6 event recently defined in the Atlantic and Pacific oceans, which caused a 2°C warming of the seafloor and increased carbonate dissolution. The perturbation was likely caused by the input of 13C-depleted carbon into the ocean-atmosphere system, thus presenting many of the hallmarks of Paleogene hyperthermal deposits. However, from the available data it is not possible to conclusively state that the event was associated with extreme global warming. Based on our analysis, the perturbation lasted 226 kyr, from 47.44 to 47.214 Ma, and although this duration suggests that the triggering mechanism may have been similar to that of the Paleocene-Eocene Thermal Maximum (PETM), the magnitude of the carbon input and the subsequent environmental perturbation during the early Lutetian event were not as severe as in the PETM.