993 resultados para degradation compounds


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long-term effectiveness of chlorhexidine as a matrix metalloproteinase (MMP) inhibitor may be compromised when water is incompletely removed during dentin bonding. This study challenged this anti-bond degradation strategy by testing the null hypothesis that wet-bonding with water or ethanol has no effect on the effectiveness of chlorhexidine in preventing hybrid layer degradation over an 18-month period. Acid-etched dentin was bonded under pulpal pressure simulation with Scotchbond MP and Single Bond 2, with water wet-bonding or with a hydrophobic adhesive with ethanol wet-bonding, with or without pre-treatment with chlorhexidine diacetate (CHD). Resin-dentin beams were prepared for bond strength and TEM evaluation after 24 hrs and after aging in artificial saliva for 9 and 18 mos. Bonds made to ethanol-saturated dentin did not change over time with preservation of hybrid layer integrity. Bonds made to CHD pre-treated acid-etched dentin with commercial adhesives with water wet-bonding were preserved after 9 mos but not after 18 mos, with severe hybrid layer degradation. The results led to rejection of the null hypothesis and highlight the concept of biomimetic water replacement from the collagen intrafibrillar compartments as the ultimate goal in extending the longevity of resin-dentin bonds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. The aim of this study was to evaluate the influence of monomer content on fracture toughness (K(Ic)) before and after ethanol solution storage, flexural properties and degree of conversion (DC) of bisphenol A glycidyl methacrylate (Bis-GMA) co-polymers. Methods. Five formulations were tested, containing Bis-GMA (B) combined with TEGDMA (T), UDMA (U) or Bis-EMA (E), as follows (in mol%): 30B:70T; 30B:35T:35U; 30B:70U; 30B:35T:35E; 30B:70E. Bimodal filler was introduced at 80 wt%. Single-edge notched beams for fracture toughness (FT, 25 mm x 5 mm x 2.5 mm, a/w = 0.5, n = 20) and 10 mm x 2 mm x 1 mm beams for flexural strength (FS) and modulus (FM) determination (10 mm x 2 mm x 1 mm, n = 10) were built and then stored in distilled water for 24 h at 37 degrees C. All FS/FM beams and half of the FT specimens were immediately submitted to three-point bending test. The remaining FT specimens were stored in a 75%ethanol/25%water (v/v) solution for 3 months prior to testing. DC was determined with FT-Raman spectroscopy in fragments of both FT and FS/FM specimens at 24 h. Data were submitted to one-way ANOVA/Tukey test (alpha = 5%). Results. The 30B:70T composite presented the highest K(Ic) value (in MPa m(1/2)) at 24 h (1.3 +/- 0.4), statistically similar to 30B:35T:35U and 30B:70U, while 30B:70E presented the lowest value (0.5 +/- 0.1). After ethanol storage, reductions in K(Ic) ranged from 33 to 72%. The 30B:70E material presented the lowest reduction in FT and 30B:70U, the highest. DC was similar among groups (69-73%), except for 30B:70U (52 +/- 4%, p < 0.001). 30B:70U and 30B:35T:35U presented the highest FS (125 +/- 21 and 122 +/- 14 MPa, respectively), statistically different from 30B:70T or 30B:70E (92 +/- 20 and 94 +/- 16 MPa, respectively). Composites containing UDMA or Bis-EMA associated with Bis-GMA presented similar FM, statistically lower than 30B:35T:35U. Significance. Composites formulated with Bis-GMA:TEGDMA:UDMA presented the best compromise between conversion and mechanical properties. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present randomized, controlled prospective study evaluated the histomorphological response of human dental pulps capped with two grey mineral trioxide aggregate (MTA) compounds. Pulp exposures were performed on the occlusal floor of 40 human permanent pre-molars. The pulp was capped either with ProRoot (Dentsply) or MTA-Angelus (Angelus) and restored with zinc oxide eugenol cement. After 30 and 60 days, teeth were extracted and processed for histological examination and the effects on the pulp were scored. The data were subjected to Kruskal-Wallis and Conover tests (alpha = 0.05). In five out of the 40 teeth bacteria were present in pulp tissue. No significant difference was observed between the two materials (P > 0.05) in terms of overall histological features (hard tissue bridge, inflammatory response, giant cells and particles of capping materials). Overall, 94% and 88% of the specimens capped with MTA-Angelus and ProRoot, respectively, showed either total or partial hard tissue bridge formation (P > 0.05). Both commercial materials ProRoot (Dentsply) and MTA-Angelus (Angelus) produced similar responses in the pulp when used for pulp capping in intact, caries-free teeth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To evaluate the effect of chemical degradation on bond strength of resin-modified glass-ionomer cements bonded to primary and permanent dentin. Methods: Class I cavities of permanent and primary extracted human molars were restored with two resin-modified glass-ionomer cements: Fuji 11 LC and Vitremer, and stored in water for 24 h. Half samples were immersed in 10% NaOCl aqueous solution for 5 h. Teeth were sectioned into beams and tested for microtensile bond strengths. Results were analyzed with multiple ANOVA and Tukey`s tests (p < 0.05). Analysis of debonded surfaces was performed by SEM. Results: 24 h bond strengths for Vitremer and Fuji 11 LC were similar. For Fuji 11, bond strength values were higher for primary than for permanent dentin. Vitremer bond strength was similar for both. Chemical degradation did not affect Fuji I] LC bond strength to dentin. However, decreases in bond strength were found for Vitremer groups after NaOCl immersion. Signs of glass ionomer-dentin interaction were evident by SEM analysis for Fuji 11 LC specimens. Conclusions: Vitremer and Fuji II presented similar bond strength at 24. Vitremer dentin bonds were prone to chemical degradation. Fuji II LC-dentin bonds showed typical features of glass-ionomer dentin interaction at the bonded interfaces, and were resistant to in vitro degradation. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To evaluate the effect of EDTA pre-treatment of dentine on resistance to degradation of the bond between dentine and resin-modified glass-ionomer cements. Methods: Sixty non-carious human molars underwent cavity preparations. Teeth were restored with Fuji II LC or Vitremer. Half of the cavities were restored following manufacturers` instructions whereas the other half was pre-treated with EDTA (0.1 M, pH 7.4) for 60 s. Teeth were stored in water at 37 degrees C for 24 h, 3 months or submitted to 10% NaOCl immersion for 5 h. Teeth were sectioned into beams (1 +/- 0.1 mm) and tested to failure in tension at 0.5 mm/min. Bond strength data (MPa) were analyzed by ANOVA and SNK multiple-comparisons tests (p < 0.05). Results: When EDTA was used for pre-treatment of dentine, higher bond strengths were observed for both cements. Degradation challenges produced a decrease in bond strength values only in the Vitremer group. This decrease was avoided when EDTA was used for dentine treatment before restoring with Vitremer. Conclusions: EDTA pre-treatment of dentine increases bond strength of resin modified glass-ionomers cements to dentine and improves resistance to degradation of the bond between Vitremer and dentine. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: The aim of this study was to explore the therapeutic opportunities of each step of 3-step etch-and-rinse adhesives. Methods: Etch-and-rinse adhesive systems are the oldest of the multi-generation evolution of resin bonding systems. In the 3-step version, they involve acid-etching, priming and application of a separate adhesive. Each step can accomplish multiple goals. Acid-etching, using 32-37% phosphoric acid (pH 0.1-0.4) not only simultaneously etches enamel and dentin, but the low pH kills many residual bacteria. Results: Some etchants include anti-microbial compounds such as benzalkonium chloride that also inhibits matrix metalloproteinases (MMPs) in dentin. Primers are usually water and HEMA-rich solutions that ensure complete expansion of the collagen fibril meshwork and wet the collagen with hydrophilic monomers. However, water alone can re-expand dried dentin and can also serve as a vehicle for protease inhibitors or protein cross-linking agents that may increase the durability of resin-dentin bonds. In the future, ethanol or other water-free solvents may serve as dehydrating primers that may also contain antibacterial quaternary ammonium methacrylates to inhibit dentin MMPs and increase the durability of resin-dentin bonds. The complete evaporation of solvents is nearly impossible. Significance: Manufacturers may need to optimize solvent concentrations. Solvent-free adhesives can seal resin-dentin interfaces with hydrophobic resins that may also contain fluoride and antimicrobial compounds. Etch-and-rinse adhesives produce higher resin-dentin bonds that are more durable than most 1 and 2-step adhesives. Incorporation of protease inhibitors in etchants and/or cross-linking agents in primers may increase the durability of resin-dentin bonds. The therapeutic potential of etch-and-rinse adhesives has yet to be fully exploited. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV)-encoded nuclear antigen 1 (EBNA1) includes a unique glycine-alanine repeat domain that inhibits the endogenous presentation of cytotoxic T lymphocyte (CTL) epitopes through the class I pathway by blocking proteasome-dependent degradation of this antigen. This immune evasion mechanism has been implicated in the pathogenesis of EBV-associated diseases. Here, we show that cotranslational ubiquitination combined with N-end rule targeting enhances the intracellular degradation of EBNA1, thus resulting in a dramatic reduction in the half-life of the antigen. Using DNA expression vectors encoding different forms of ubiquitinated EBNA1 for in vivo studies revealed that this rapid degradation, remarkably, leads to induction of a very strong CTL response to an EBNA1-specific CTL epitope. Furthermore, this targeting also restored the endogenous processing of HLA class I-restricted CTL epitopes within EBNA1 for immune recognition by human EBV-specific CTLs. These observations provide, for the first time, evidence that the glycine-alanine repeat-mediated proteasomal block on EBNA1 can be reversed by specifically targeting this antigen for rapid degradation resulting in enhanced CD8+ T cell-mediated recognition in vitro and in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flash vacuum thermolysis of a large variety of heterocyclic compounds is a useful means of production of ketenes, ketenimines, thioketenes, allenes, iminopropadienones, bis(imino)propadienes, iminopropadienethiones, carbodiimides, isothiocyanates, acetylenes, fulminic acid, nitrile imines and nitrile ylides, nitriles, cyanamides, cyanates, and other compounds, often in preparatively useful yields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A range of organohalogen compounds (10 polychlorinated biphenyl [PCB] congeners, DDT and metabolites, chlordane-related compounds, the potential natural organochlorine compound Q1, toxaphene, hexachlorobenzene, hexachlorocyclohexanes, dieldrin, and several yet unidentified brominated compounds) were detected in the blubber of four bottlenose dolphins (Tursiops truncatus), one common dolphin (Delphinus delphis), and seven dugongs (Dugong dugon), as well as in adipose tissue of a green turtle (Chelonia mydas) and a python (Morelia spilota) from northeast Queensland (Australia). The green turtle and dugongs accumulated lower organohalogen levels than the dolphins. Lower levels in dugongs were expected because this species is exclusively herbivorous. Highest PCB and DDT levels recorded in dugongs were 209 and 173 mug/kg lipids, respectively. Levels of the nonanthropogenic heptachlorinated compound Q1 (highest level in dugongs was 160 mug/kg lipids) were estimated using the ECD response factor of trans-nonachlor. Highest organohalogen levels were found in blubber of dolphins for sumDDT (575-52,500 mug/kg) and PCBs (600-25,500 mug/kg lipids). Furthermore, Q1 was a major organohalogen detected in all samples analyzed, ranging from 450 -9,100 mug/kg lipids. The highest concentration of Q1 determined in this study represents the highest concentration reported to date in an environmental sample. Levels of chlordane-related compounds were also high (280-7,700 mug/kg, mainly derived from trans-nonachlor), but concentrations of hexachlorobenzene, hexachlorocyclohexanes, dieldrin, and toxaphene were relatively low and contributed little to the overall organohalogen contamination. Furthermore, a series of three major (BC-1, BC-2, and BC-3) and six minor (BC-4 through BC-9) unknown brominated compounds were observable by extracting m/z 79 and m/z 81 from the GC/ECNI-MS full scan run. Structural proposals were made for the two major recalcitrant compounds (referred to as BC-1 and BC-2). BC-2 appears to be a tetrabromo-methoxy-diphenylether (512 u) and BC-1 has 14 u (corresponding with an additional CH2 group) more relative to BC-1. In general the organohalogen pattern observed in blubber of dolphins was different compared to similar samples from other locations in the world, which is apparent from the fact that the four major abundant signals in the GC/ECD chromatogram. of D. delphis originated from the four unknown compounds Q1, BC-1, BC-2, and BC-3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cylindrospermopsis raciborskii produces the cyanotoxin cylindrospermopsin, which is commonly found in SouthEast Queensland water reservoirs, and has been responsible for the closure of these reservoirs as a source of drinking water in recent times. Thus, alternative more effective treatment methods need to be investigated for the removal of toxins such as cylindrospermopsin. This study examined the effectiveness of two brands of titanium dioxide under UV photolysis for the degradation of cylindrospermopsin. Results indicate that titanium dioxide is an efficient photocatalyst for cylindrospermopsin degradation. The titanium dioxide (TiO2), brand Degussa P-25 was found to be more efficient than the alternate brand Hombikat UV-100. There was an influence from solution pH (4, 7, and 9) with both brands of titanium dioxide, with high pH resulting in the best degradation rate. Importantly, there was no adsorption of cylindrospermopsin to titanium dioxide particles as seen with other cyanotoxins, which would adversely influence the degradation rate. Degradation rates were not influenced by temperature (19-34 degreesC) when P-25 was the source of TiO2, some temperature influence was observed with UV-100. Dissolved organic carbon concentration will reduce the efficiency of titanium dioxide for cylindrospermopsin degradation, however the presence of other inorganic matter in natural waters greatly assists the photocatalytic process. With minimal potentially toxic by-product formation expected with this treatment, and the effective degradation of cylindrospermopsin, titanium dioxide UV photolysis is a promising speculative alternative water treatment method. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Renal drug elimination is determined by glomerular filtration, tubular secretion, and tubular reabsorption. Changes in the integrity of these processes influence renal drug clearance, and these changes may not be detected by conventional measures of renal function such as creatinine clearance. The aim of the current study was to examine the analytic issues needed to develop a cocktail of marker drugs (fluconazole, rac-pindolol, para-aminohippuric acid, sinistrin) to measure simultaneously the mechanisms contributing to renal clearance. High-performance liquid chromatographic methods of analysis for fluconazole, pindolol, para-aminohippuric acid, and creatinine and an enzymatic assay for sinistrin were developed or modified and then validated to allow determination of each of the compounds in both plasma and urine in the presence of all other marker drugs. A pilot clinical study in one volunteer was conducted to ensure that the assays were suitable for quantitating all the marker drugs to the sensitivity and specificity needed to allow accurate determination of individual renal clearances. The performance of all assays (plasma and urine) complied with published validation criteria. All standard curves displayed linearity over the concentration ranges required, with coefficients of correlation greater than 0.99. The precision of the interday and intraday variabilities of quality controls for each marker in plasma and urine were all less than 11.9% for each marker. Recoveries of markers (and internal standards) in plasma and urine were all at least 90%. All markers investigated were shown to be stable when plasma or urine was frozen and thawed. For all the assays developed, there were no interferences from other markers or endogenous substances. In a pilot clinical study, concentrations of all markers could be accurately and reproducibly determined for a sufficient duration of time after administration to calculate accurate renal clearance for each marker. This article presents details of the analytic techniques developed for measuring concentrations of marker drugs for different renal elimination processes administered as a single dose to define the processes contributing to renal drug elimination.