794 resultados para decision support systems, GIS, interpolation, multiple regression
Resumo:
Ready-to-eat (RTE) foods can be readily consumed with minimum or without any further preparation; their processing is complex—involving thorough decontamination processes— due to their composition of mixed ingredients. Compared with conventional preservation technologies, novel processing technologies can enhance the safety and quality of these complex products by reducing the risk of pathogens and/ or by preserving related health-promoting compounds. These novel technologies can be divided into two categories: thermal and non-thermal. As a non-thermal treatment, High Pressure Processing is a very promising novel methodology that can be used even in the already packaged RTE foods. A new “volumetric” microwave heating technology is an interesting cooking and decontamination method directly applied to foods. Cold Plasma technology is a potential substitute of chlorine washing in fresh vegetable decontamination. Ohmic heating is a heating method applicable to viscous products but also to meat products. Producers of RTE foods have to deal with challenging decisions starting from the ingredients suppliers to the distribution chain. They have to take into account not only the cost factor but also the benefits and food products’ safety and quality. Novel processing technologies can be a valuable yet large investment for several SME food manufacturers, but they need support data to be able to make adequate decisions. Within the FP7 Cooperation funded by the European Commission, the STARTEC project aims to develop an IT decision supporting tool to help food business operators in their risk assessment and future decision making when producing RTE foods with or without novel preservation technologies.
Resumo:
In this paper, an automatic Smart Irrigation Decision Support System, SIDSS, is proposed to manage irrigation in agriculture. Our system estimates the weekly irrigations needs of a plantation, on the basis of both soil measurements and climatic variables gathered by several autonomous nodes deployed in field. This enables a closed loop control scheme to adapt the decision support system to local perturbations and estimation errors. Two machine learning techniques, PLSR and ANFIS, are proposed as reasoning engine of our SIDSS. Our approach is validated on three commercial plantations of citrus trees located in the South-East of Spain. Performance is tested against decisions taken by a human expert.
Resumo:
A presente tese resulta de um trabalho de investigação cujo objectivo se centrou no problema de localização-distribuição (PLD) que pretende abordar, de forma integrada, duas actividades logísticas intimamente relacionadas: a localização de equipamentos e a distribuição de produtos. O PLD, nomeadamente a sua modelação matemática, tem sido estudado na literatura, dando origem a diversas aproximações que resultam de diferentes cenários reais. Importa portanto agrupar as diferentes variantes por forma a facilitar e potenciar a sua investigação. Após fazer uma revisão e propor uma taxonomia dos modelos de localização-distribuição, este trabalho foca-se na resolução de alguns modelos considerados como mais representativos. É feita assim a análise de dois dos PLDs mais básicos (os problema capacitados com procura nos nós e nos arcos), sendo apresentadas, para ambos, propostas de resolução. Posteriormente, é abordada a localização-distribuição de serviços semiobnóxios. Este tipo de serviços, ainda que seja necessário e indispensável para o público em geral, dada a sua natureza, exerce um efeito desagradável sobre as comunidades contíguas. Assim, aos critérios tipicamente utilizados na tomada de decisão sobre a localização destes serviços (habitualmente a minimização de custo) é necessário adicionar preocupações que reflectem a manutenção da qualidade de vida das regiões que sofrem o impacto do resultado da referida decisão. A abordagem da localização-distribuição de serviços semiobnóxios requer portanto uma análise multi-objectivo. Esta análise pode ser feita com recurso a dois métodos distintos: não interactivos e interactivos. Ambos são abordados nesta tese, com novas propostas, sendo o método interactivo proposto aplicável a outros problemas de programação inteira mista multi-objectivo. Por último, é desenvolvida uma ferramenta de apoio à decisão para os problemas abordados nesta tese, sendo apresentada a metodologia adoptada e as suas principais funcionalidades. A ferramenta desenvolvida tem grandes preocupações com a interface de utilizador, visto ser direccionada para decisores que tipicamente não têm conhecimentos sobre os modelos matemáticos subjacentes a este tipo de problemas.
Resumo:
Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2010
Resumo:
This paper presents a Multi-Agent Market simulator designed for analyzing agent market strategies based on a complete understanding of buyer and seller behaviors, preference models and pricing algorithms, considering user risk preferences and game theory for scenario analysis. The system includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions, and capable of considering other agents reactions.
Resumo:
Group decision making plays an important role in organizations, especially in the present-day economy that demands high-quality, yet quick decisions. Group decision-support systems (GDSSs) are interactive computer-based environments that support concerted, coordinated team efforts toward the completion of joint tasks. The need for collaborative work in organizations has led to the development of a set of general collaborative computer-supported technologies and specific GDSSs that support distributed groups (in time and space) in various domains. However, each person is unique and has different reactions to various arguments. Many times a disagreement arises because of the way we began arguing, not because of the content itself. Nevertheless, emotion, mood, and personality factors have not yet been addressed in GDSSs, despite how strongly they influence results. Our group’s previous work considered the roles that emotion and mood play in decision making. In this article, we reformulate these factors and include personality as well. Thus, this work incorporates personality, emotion, and mood in the negotiation process of an argumentbased group decision-making process. Our main goal in this work is to improve the negotiation process through argumentation using the affective characteristics of the involved participants. Each participant agent represents a group decision member. This representation lets us simulate people with different personalities. The discussion process between group members (agents) is made through the exchange of persuasive arguments. Although our multiagent architecture model4 includes two types of agents—the facilitator and the participant— this article focuses on the emotional, personality, and argumentation components of the participant agent.
Resumo:
Involving groups in important management processes such as decision making has several advantages. By discussing and combining ideas, counter ideas, critical opinions, identified constraints, and alternatives, a group of individuals can test potentially better solutions, sometimes in the form of new products, services, and plans. In the past few decades, operations research, AI, and computer science have had tremendous success creating software systems that can achieve optimal solutions, even for complex problems. The only drawback is that people don’t always agree with these solutions. Sometimes this dissatisfaction is due to an incorrect parameterization of the problem. Nevertheless, the reasons people don’t like a solution might not be quantifiable, because those reasons are often based on aspects such as emotion, mood, and personality. At the same time, monolithic individual decisionsupport systems centered on optimizing solutions are being replaced by collaborative systems and group decision-support systems (GDSSs) that focus more on establishing connections between people in organizations. These systems follow a kind of social paradigm. Combining both optimization- and socialcentered approaches is a topic of current research. However, even if such a hybrid approach can be developed, it will still miss an essential point: the emotional nature of group participants in decision-making tasks. We’ve developed a context-aware emotion based model to design intelligent agents for group decision-making processes. To evaluate this model, we’ve incorporated it in an agent-based simulator called ABS4GD (Agent-Based Simulation for Group Decision), which we developed. This multiagent simulator considers emotion- and argument based factors while supporting group decision-making processes. Experiments show that agents endowed with emotional awareness achieve agreements more quickly than those without such awareness. Hence, participant agents that integrate emotional factors in their judgments can be more successful because, in exchanging arguments with other agents, they consider the emotional nature of group decision making.
Resumo:
Electricity markets are complex environments comprising several negotiation mechanisms. MASCEM (Multi- Agent System for Competitive Electricity Markets) is a simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. ALBidS (Adaptive Learning Strategic Bidding System) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This paper aims to complement ALBidS strategies usage by MASCEM players, providing, through the Six Thinking Hats group decision technique, a means to combine them and take advantages from their different perspectives. The combination of the different proposals resulting from ALBidS’ strategies is performed through the application of a Genetic Algorithm, resulting in an evolutionary learning approach.
Resumo:
This paper presents a decision support tool methodology to help virtual power players (VPPs) in the Smart Grid (SGs) context to solve the day-ahead energy resource scheduling considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G). The main focus is the application of a new hybrid method combing a particle swarm approach and a deterministic technique based on mixedinteger linear programming (MILP) to solve the day-ahead scheduling minimizing total operation costs from the aggregator point of view. A realistic mathematical formulation, considering the electric network constraints and V2G charging and discharging efficiencies is presented. Full AC power flow calculation is included in the hybrid method to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
Os Mercados Eletrónicos atingiram uma complexidade e nível de sofisticação tão elevados, que tornaram inadequados os modelos de software convencionais. Estes mercados são caracterizados por serem abertos, dinâmicos e competitivos, e constituídos por várias entidades independentes e heterogéneas. Tais entidades desempenham os seus papéis de forma autónoma, seguindo os seus objetivos, reagindo às ocorrências do ambiente em que se inserem e interagindo umas com as outras. Esta realidade levou a que existisse por parte da comunidade científica um especial interesse no estudo da negociação automática executada por agentes de software [Zhang et al., 2011]. No entanto, a diversidade dos atores envolvidos pode levar à existência de diferentes conceptualizações das suas necessidades e capacidades dando origem a incompatibilidades semânticas, que podem prejudicar a negociação e impedir a ocorrência de transações que satisfaçam as partes envolvidas. Os novos mercados devem, assim, possuir mecanismos que lhes permitam exibir novas capacidades, nomeadamente a capacidade de auxiliar na comunicação entre os diferentes agentes. Pelo que, é defendido neste trabalho que os mercados devem oferecer serviços de ontologias que permitam facilitar a interoperabilidade entre os agentes. No entanto, os humanos tendem a ser relutantes em aceitar a conceptualização de outros, a não ser que sejam convencidos de que poderão conseguir um bom negócio. Neste contexto, a aplicação e exploração de relações capturadas em redes sociais pode resultar no estabelecimento de relações de confiança entre vendedores e consumidores, e ao mesmo tempo, conduzir a um aumento da eficiência da negociação e consequentemente na satisfação das partes envolvidas. O sistema AEMOS é uma plataforma de comércio eletrónico baseada em agentes que inclui serviços de ontologias, mais especificamente, serviços de alinhamento de ontologias, incluindo a recomendação de possíveis alinhamentos entre as ontologias dos parceiros de negociação. Este sistema inclui também uma componente baseada numa rede social, que é construída aplicando técnicas de análise de redes socias sobre informação recolhida pelo mercado, e que permite melhorar a recomendação de alinhamentos e auxiliar os agentes na sua escolha. Neste trabalho são apresentados o desenvolvimento e implementação do sistema AEMOS, mais concretamente: • É proposto um novo modelo para comércio eletrónico baseado em agentes que disponibiliza serviços de ontologias; • Adicionalmente propõem-se o uso de redes sociais emergentes para captar e explorar informação sobre relações entre os diferentes parceiros de negócio; • É definida e implementada uma componente de serviços de ontologias que é capaz de: • o Sugerir alinhamentos entre ontologias para pares de agentes; • o Traduzir mensagens escritas de acordo com uma ontologia em mensagens escritas de acordo com outra, utilizando alinhamentos previamente aprovados; • o Melhorar os seus próprios serviços recorrendo às funcionalidades disponibilizadas pela componente de redes sociais; • É definida e implementada uma componente de redes sociais que: • o É capaz de construir e gerir um grafo de relações de proximidade entre agentes, e de relações de adequação de alinhamentos a agentes, tendo em conta os perfis, comportamento e interação dos agentes, bem como a cobertura e utilização dos alinhamentos; • o Explora e adapta técnicas e algoritmos de análise de redes sociais às várias fases dos processos do mercado eletrónico. A implementação e experimentação do modelo proposto demonstra como a colaboração entre os diferentes agentes pode ser vantajosa na melhoria do desempenho do sistema e como a inclusão e combinação de serviços de ontologias e redes sociais se reflete na eficiência da negociação de transações e na dinâmica do mercado como um todo.
Resumo:
Spatial analysis and social network analysis typically take into consideration social processes in specific contexts of geographical or network space. The research in political science increasingly strives to model heterogeneity and spatial dependence. To better understand and geographically model the relationship between “non-political” events, streaming data from social networks, and political climate was the primary objective of the current study. Geographic information systems (GIS) are useful tools in the organization and analysis of streaming data from social networks. In this study, geographical and statistical analysis were combined in order to define the temporal and spatial nature of the data eminating from the popular social network Twitter during the 2014 FIFA World Cup. The study spans the entire globe because Twitter’s geotagging function, the fundamental data that makes this study possible, is not limited to a geographic area. By examining the public reactions to an inherenlty non-political event, this study serves to illuminate broader questions about social behavior and spatial dependence. From a practical perspective, the analyses demonstrate how the discussion of political topics fluсtuate according to football matches. Tableau and Rapidminer, in addition to a set basic statistical methods, were applied to find patterns in the social behavior in space and time in different geographic regions. It was found some insight into the relationship between an ostensibly non-political event – the World Cup - and public opinion transmitted by social media. The methodology could serve as a prototype for future studies and guide policy makers in governmental and non-governmental organizations in gauging the public opinion in certain geographic locations.
Resumo:
This work project focuses on developing new approaches which enhance Portuguese exports towards a defined German industry sector within the information technology and electronics fields. Firstly and foremost, information was collected and a set of expert and top managers’ interviews were performed in order to acknowledge the demand of the German market while identifying compatible Portuguese supply capabilities. Among the main findings, Industry 4.0 presents itself as a valuable opportunity in the German market for Portuguese medium sized companies in the embedded systems area of expertise for machinery and equipment companies. In order to achieve the purpose of the work project, an embedded systems platform targeting machinery and equipment companies was suggested as well as it was developed several recommendations on how to implement it. An alternative approach for this platform was also considered within the German market namely the eHealth sector having the purpose of enhancing the current healthcare service provision.