340 resultados para de Sitter spacetime
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - IFT
Resumo:
Pós-graduação em Física - IFT
Resumo:
Pós-graduação em Educação - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Desenvolvemos a quantização do campo vetorial não massivo no espaço-tempo de Schwarzschild, e calculamos a potência irradiada por uma carga elétrica em órbita circular em torno de um objeto com massa M em ambos os espaços-tempos. Em Minkowski é encontrada a expressão analítica da potência irradiada utilizando teoria quântica de campos e assumindo gravitação newtoniana. O resultado obtido é equivalente ao resultado clássico, dado que o cálculo é realizado em nível de árvore. Dadas as dificuldades matemáticas encontradas ao se tentar obter soluções expressas em termos de funções especiais conhecidas, em Schwarzschild o problema é abordado de duas formas: solução analítica no limite de baixas freqüências, e resolução numérica. O primeiro caso serviu como cheque de consistência para o método numérico. Em Schwarzschild, o cálculo também é realizado utilizando teoria quântica de campos em nível de árvore, e a expressão da potência é encontrada analiticamente na aproximação de baixas freqüências e através de métodos numérico. Após a comparação dos resultados, concluímos que, para uma mesma velocidade angular de rotação da carga (medida por observadores estatísticos assintóticos), a potência irradiada em Minkowski é maior que a potência irradiada em Schwarzschild.
Resumo:
No presente trabalho foi considerado um campo escalar real não massivo em um espaço-tempo bidimensional, satisfazendo à condição de fronteira Dirichlet ou Neumann na posição instantânea de uma fronteira em movimento. Para uma lei de movimento relativística, foi mostrado que as condiçõoes de fronteira Dirichlet e Neumann produzem a mesma força de radiação sobre um espelho em movimento quando o estado inicial do campo é invariante sobre translações temporais. Obtemos as fórmulas exatas para a densidade de energia do campo e da força de radiação na fronteira para os estados de vácuo, coerente e comprimido. No limite não-relativistico, os resultados obtidos coincidem com os encontrados na literatura. Também foi investigado o campo dentro de uma cavidade oscilante. Considerando as condiçõoes de fronteira Neumann e Dirichlet, escreveu-se a fórmulas exata para a densidade de energia dentro de uma cavidade não-estática, para um estado inicial arbitrário do campo. Tomando como base a equação de Moore, nós calculamos recursivamente a densidade de energia e investigamos a evolução temporal da densidade de energia para o estado coerente do campo.
Resumo:
Na presente dissertação calculou-se a seção de choque de absorção de buracos negros de Schwarzschild para os campos escalar não massivo e eletromagnético. Também calculamos a seção de choque de absorção de buracos acústicos canônicos. Utilizamos um método numérico para obter os resultados em freqüências arbitrárias. Obtemos também expressões analíticas para as seções de choque de absorção nos limites de baixas e altas freqüências. Os resultados numéricos estão em excelente concordância com os valores das seções de choque de absorção em baixas e altas freqüências obtidos analiticamente. No limite em que a freqüência tende a zero, a seção de choque de absorção tende ao valor da área do horizonte de eventos tanto para o caso do campo escalar não massivo em Schwarzschild quanto para o buraco acústico canônico. Entretanto, a medida que a freqüência aumenta, estes resultados se tornam bastante distintos. Isto mostra que, apesar de a forma do espaço-tempo não exercer influência sobre a seção de choque escalar no limite em que a freqüência tende a zero, ela é determinante fora desse limite. Observamos também que os valores das seções de choque de absorção escalar e eletromagnética em Schwarzschild coincidem para freqüências e momentos angulares suficientemente grandes. O spin da partícula espalhada, neste caso, apesar de ter grande influência a baixas energias, é menos importante para o valor da seção de choque de absorção quanto maiores forem a freqüência e o momento angular da onda incidente.
Resumo:
No presente trabalho, nós investigamos a densidade de energia e a força de reação a radiação quântica sobre uma fronteira em movimento que impõem ao campo escalar, sem massa, condições de contorno de Dirichlet ou Neumann. Apesar de assumirmos um particular movimento para fronteira, introduzido por Walker e Davies muitos anos atrás (J. Phys. A, 15 L477, 1982), consideramos novas possibilidades para o estado inicial do campo, entre as quais, estados térmicos e coerentes. Nós investigamos, também, o problema de uma cavidade com uma das fronteiras no particular movimento proposto por Walker e Davies, levando em conta o estado de vácuo, térmico e coerente como estados iniciais do campo. Finalmente, investigamos o caso de uma fronteira não estática que impõem condições de contorno de Robin ao campo.
Resumo:
O primeiro objetivo do presente trabalho é calcular a força quântica exata que atua sobre as fronteiras de uma cavidade, bem como o comportamento exato da densidade de energia numa cavidade não estática, onde ambas as fronteiras executam movimentos prescritos arbitrários. O modelo considerado é o do campo escalar não massivo em 1 + 1 dimensões, sendo que o campo obedece à condição de Dirichlet em cada uma das fronteiras. Considerando o vácuo como estado inicial do campo, nós mostramos que a densidade de energia em um dado ponto do espaço-tempo pode ser obtida através do traçado de uma sequência de linhas nulas, conectando o valor da densidade de energia nesse ponto a um certo valor conhecido da densidade de energia em um ponto das “zonas estáticas”. O segundo objetivo é mostrar que para movimentos específicos das fronteiras, particularmente para os quais ambas voltam às suas posições iniciais em instantes múltiplos do comprimento inicial da cavidade, o método exato por nós obtido permite encontrar soluções analíticas escritas como uma expansão em série na variável que controla as amplitudes de movimento das fronteiras. Os resultados analíticos por nós obtidos são aplicáveis a uma vasta classe de movimentos, a qual inclui a grande maioria dos casos ressonantes estudados na literatura. O terceiro objetivo do presente trabalho é investigar, através dos métodos de cálculos desenvolvidos aqui, o fenômeno da interferência na energie e na densidade de energia em cavidades com duas fronteiras móveis, obtendo fórmulas genéricas para os termos de interferência respectivos.