970 resultados para data visualization
Resumo:
In the article, we have reviewed the means for visualization of syntax, semantics and source code for programming languages which support procedural and/or object-oriented paradigm. It is examined how the structure of the source code of the structural and object-oriented programming styles has influenced different approaches for their teaching. We maintain a thesis valid for the object-oriented programming paradigm, which claims that the activities for design and programming of classes are done by the same specialist, and the training of this specialist should include design as well as programming skills and knowledge for modeling of abstract data structures. We put the question how a high level of abstraction in the object-oriented paradigm should be presented in simple model in the design stage, so the complexity in the programming stage stay low and be easily learnable. We give answer to this question, by building models using the UML notation, as we take a concrete example from the teaching practice including programming techniques for inheritance and polymorphism.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2016
Resumo:
Current reform initiatives recommend that school geometry teaching and learning include the study of three-dimensional geometric objects and provide students with opportunities to use spatial abilities in mathematical tasks. Two ways of using Geometer's Sketchpad (GSP), a dynamic and interactive computer program, in conjunction with manipulatives enable students to investigate and explore geometric concepts, especially when used in a constructivist setting. Research on spatial abilities has focused on visual reasoning to improve visualization skills. This dissertation investigated the hypothesis that connecting visual and analytic reasoning may better improve students' spatial visualization abilities as compared to instruction that makes little or no use of the connection of the two. Data were collected using the Purdue Spatial Visualization Tests (PSVT) administered as a pretest and posttest to a control and two experimental groups. Sixty-four 10th grade students in three geometry classrooms participated in the study during 6 weeks. Research questions were answered using statistical procedures. An analysis of covariance was used for a quantitative analysis, whereas a description of students' visual-analytic processing strategies was presented using qualitative methods. The quantitative results indicated that there were significant differences in gender, but not in the group factor. However, when analyzing a sub sample of 33 participants with pretest scores below the 50th percentile, males in one of the experimental groups significantly benefited from the treatment. A review of previous research also indicated that students with low visualization skills benefited more than those with higher visualization skills. The qualitative results showed that girls were more sophisticated in their visual-analytic processing strategies to solve three-dimensional tasks. It is recommended that the teaching and learning of spatial visualization start in the middle school, prior to students' more rigorous mathematics exposure in high school. A duration longer than 6 weeks for treatments in similar future research studies is also recommended.
Resumo:
Lake Analyzer is a numerical code coupled with supporting visualization tools for determining indices of mixing and stratification that are critical to the biogeochemical cycles of lakes and reservoirs. Stability indices, including Lake Number, Wedderburn Number, Schmidt Stability, and thermocline depth are calculated according to established literature definitions and returned to the user in a time series format. The program was created for the analysis of high-frequency data collected from instrumented lake buoys, in support of the emerging field of aquatic sensor network science. Available outputs for the Lake Analyzer program are: water temperature (error-checked and/or down-sampled), wind speed (error-checked and/or down-sampled), metalimnion extent (top and bottom), thermocline depth, friction velocity, Lake Number, Wedderburn Number, Schmidt Stability, mode-1 vertical seiche period, and Brunt-Väisälä buoyancy frequency. Secondary outputs for several of these indices delineate the parent thermocline depth (seasonal thermocline) from the shallower secondary or diurnal thermocline. Lake Analyzer provides a program suite and best practices for the comparison of mixing and stratification indices in lakes across gradients of climate, hydro-physiography, and time, and enables a more detailed understanding of the resulting biogeochemical transformations at different spatial and temporal scales.
Resumo:
It has long been known that vocabulary is essential in the development of reading. Because vocabulary leading to increased comprehension is important, it necessary to determine strategies for ensuring that the best methods of teaching vocabulary are used to help students make gains in vocabulary leading to reading comprehension. According to the National Reading Panel, multiple strategies that involve active engagement on the part of the student are more effective than the use of just one strategy. The purpose of this study was to determine if students' use of visualization, student-generated pictures of onset-and-rime-patterned vocabulary, and story read-alouds with discussion, would enable diverse first-grade students to increase their vocabulary and comprehension. In addition, this study examined the effect of the multimodal framework of strategies on English learners (ELs). This quasi-experimental study (N=69) was conducted in four first-grade classrooms in a low socio-economic school. Two treatment classes used a multimodal framework of strategies to learn weekly vocabulary words and comprehension. Two comparison classrooms used the traditional method of teaching weekly vocabulary and comprehension. Data sources included Florida Assessments for Instruction in Reading (FAIR), comprehension and vocabulary scores, and weekly MacMillan/McGraw Hill Treasures basal comprehension questions and onset-and-rime vocabulary questions. This research determined that the treatment had an effect in adjusted FAIR comprehension means by group, with the treatment group (adj M = 5.14) significantly higher than the comparison group ( adj M = -8.26) on post scores. However, the treatment means did not increase from pre to post, but the comparison means significantly decreased from pre to post as the materials became more challenging. For the FAIR vocabulary, there was a significant difference by group with the comparison adjusted post mean higher than the treatment's, although both groups significantly increased from pre to post. However, the FAIR vocabulary posttest was not part of the Treasures vocabulary, which was taught using the multimodal framework of strategies. The Treasures vocabulary scores were not significantly different by group on the assessment across the weeks, although the treatment means were higher than those of the comparison group. Continued research is needed in the area of vocabulary and comprehension instructional methods in order to determine strategies to increase diverse, urban students' performance.
Resumo:
Archaeologists are often considered frontrunners in employing spatial approaches within the social sciences and humanities, including geospatial technologies such as geographic information systems (GIS) that are now routinely used in archaeology. Since the late 1980s, GIS has mainly been used to support data collection and management as well as spatial analysis and modeling. While fruitful, these efforts have arguably neglected the potential contribution of advanced visualization methods to the generation of broader archaeological knowledge. This paper reviews the use of GIS in archaeology from a geographic visualization (geovisual) perspective and examines how these methods can broaden the scope of archaeological research in an era of more user-friendly cyber-infrastructures. Like most computational databases, GIS do not easily support temporal data. This limitation is particularly problematic in archaeology because processes and events are best understood in space and time. To deal with such shortcomings in existing tools, archaeologists often end up having to reduce the diversity and complexity of archaeological phenomena. Recent developments in geographic visualization begin to address some of these issues, and are pertinent in the globalized world as archaeologists amass vast new bodies of geo-referenced information and work towards integrating them with traditional archaeological data. Greater effort in developing geovisualization and geovisual analytics appropriate for archaeological data can create opportunities to visualize, navigate and assess different sources of information within the larger archaeological community, thus enhancing possibilities for collaborative research and new forms of critical inquiry.
Resumo:
The goal of my Ph.D. thesis is to enhance the visualization of the peripheral retina using wide-field optical coherence tomography (OCT) in a clinical setting.
OCT has gain widespread adoption in clinical ophthalmology due to its ability to visualize the diseases of the macula and central retina in three-dimensions, however, clinical OCT has a limited field-of-view of 300. There has been increasing interest to obtain high-resolution images outside of this narrow field-of-view, because three-dimensional imaging of the peripheral retina may prove to be important in the early detection of neurodegenerative diseases, such as Alzheimer's and dementia, and the monitoring of known ocular diseases, such as diabetic retinopathy, retinal vein occlusions, and choroid masses.
Before attempting to build a wide-field OCT system, we need to better understand the peripheral optics of the human eye. Shack-Hartmann wavefront sensors are commonly used tools for measuring the optical imperfections of the eye, but their acquisition speed is limited by their underlying camera hardware. The first aim of my thesis research is to create a fast method of ocular wavefront sensing such that we can measure the wavefront aberrations at numerous points across a wide visual field. In order to address aim one, we will develop a sparse Zernike reconstruction technique (SPARZER) that will enable Shack-Hartmann wavefront sensors to use as little as 1/10th of the data that would normally be required for an accurate wavefront reading. If less data needs to be acquired, then we can increase the speed at which wavefronts can be recorded.
For my second aim, we will create a sophisticated optical model that reproduces the measured aberrations of the human eye. If we know how the average eye's optics distort light, then we can engineer ophthalmic imaging systems that preemptively cancel inherent ocular aberrations. This invention will help the retinal imaging community to design systems that are capable of acquiring high resolution images across a wide visual field. The proposed model eye is also of interest to the field of vision science as it aids in the study of how anatomy affects visual performance in the peripheral retina.
Using the optical model from aim two, we will design and reduce to practice a clinical OCT system that is capable of imaging a large (800) field-of-view with enhanced visualization of the peripheral retina. A key aspect of this third and final aim is to make the imaging system compatible with standard clinical practices. To this end, we will incorporate sensorless adaptive optics in order to correct the inter- and intra- patient variability in ophthalmic aberrations. Sensorless adaptive optics will improve both the brightness (signal) and clarity (resolution) of features in the peripheral retina without affecting the size of the imaging system.
The proposed work should not only be a noteworthy contribution to the ophthalmic and engineering communities, but it should strengthen our existing collaborations with the Duke Eye Center by advancing their capability to diagnose pathologies of the peripheral retinal.
Resumo:
Multi-frequency eddy current measurements are employed in estimating pressure tube (PT) to calandria tube (CT) gap in CANDU fuel channels, a critical inspection activity required to ensure fitness for service of fuel channels. In this thesis, a comprehensive characterization of eddy current gap data is laid out, in order to extract further information on fuel channel condition, and to identify generalized applications for multi-frequency eddy current data. A surface profiling technique, generalizable to multiple probe and conductive material configurations has been developed. This technique has allowed for identification of various pressure tube artefacts, has been independently validated (using ultrasonic measurements), and has been deployed and commissioned at Ontario Power Generation. Dodd and Deeds solutions to the electromagnetic boundary value problem associated with the PT to CT gap probe configuration were experimentally validated for amplitude response to changes in gap. Using the validated Dodd and Deeds solutions, principal components analysis (PCA) has been employed to identify independence and redundancies in multi-frequency eddy current data. This has allowed for an enhanced visualization of factors affecting gap measurement. Results of the PCA of simulation data are consistent with the skin depth equation, and are validated against PCA of physical experiments. Finally, compressed data acquisition has been realized, allowing faster data acquisition for multi-frequency eddy current systems with hardware limitations, and is generalizable to other applications where real time acquisition of large data sets is prohibitive.
Resumo:
Visualization and interpretation of geological observations into a cohesive geological model are essential to Earth sciences and related fields. Various emerging technologies offer approaches to multi-scale visualization of heterogeneous data, providing new opportunities that facilitate model development and interpretation processes. These include increased accessibility to 3D scanning technology, global connectivity, and Web-based interactive platforms. The geological sciences and geological engineering disciplines are adopting these technologies as volumes of data and physical samples greatly increase. However, a standardized and universally agreed upon workflow and approach have yet to properly be developed. In this thesis, the 3D scanning workflow is presented as a foundation for a virtual geological database. This database provides augmented levels of tangibility to students and researchers who have little to no access to locations that are remote or inaccessible. A Web-GIS platform was utilized jointly with customized widgets developed throughout the course of this research to aid in visualizing hand-sized/meso-scale geological samples within a geologic and geospatial context. This context is provided as a macro-scale GIS interface, where geophysical and geodetic images and data are visualized. Specifically, an interactive interface is developed that allows for simultaneous visualization to improve the understanding of geological trends and relationships. These developed tools will allow for rapid data access and global sharing, and will facilitate comprehension of geological models using multi-scale heterogeneous observations.
Resumo:
Big Data Analytics is an emerging field since massive storage and computing capabilities have been made available by advanced e-infrastructures. Earth and Environmental sciences are likely to benefit from Big Data Analytics techniques supporting the processing of the large number of Earth Observation datasets currently acquired and generated through observations and simulations. However, Earth Science data and applications present specificities in terms of relevance of the geospatial information, wide heterogeneity of data models and formats, and complexity of processing. Therefore, Big Earth Data Analytics requires specifically tailored techniques and tools. The EarthServer Big Earth Data Analytics engine offers a solution for coverage-type datasets, built around a high performance array database technology, and the adoption and enhancement of standards for service interaction (OGC WCS and WCPS). The EarthServer solution, led by the collection of requirements from scientific communities and international initiatives, provides a holistic approach that ranges from query languages and scalability up to mobile access and visualization. The result is demonstrated and validated through the development of lighthouse applications in the Marine, Geology, Atmospheric, Planetary and Cryospheric science domains.
Resumo:
Big Data Analytics is an emerging field since massive storage and computing capabilities have been made available by advanced e-infrastructures. Earth and Environmental sciences are likely to benefit from Big Data Analytics techniques supporting the processing of the large number of Earth Observation datasets currently acquired and generated through observations and simulations. However, Earth Science data and applications present specificities in terms of relevance of the geospatial information, wide heterogeneity of data models and formats, and complexity of processing. Therefore, Big Earth Data Analytics requires specifically tailored techniques and tools. The EarthServer Big Earth Data Analytics engine offers a solution for coverage-type datasets, built around a high performance array database technology, and the adoption and enhancement of standards for service interaction (OGC WCS and WCPS). The EarthServer solution, led by the collection of requirements from scientific communities and international initiatives, provides a holistic approach that ranges from query languages and scalability up to mobile access and visualization. The result is demonstrated and validated through the development of lighthouse applications in the Marine, Geology, Atmospheric, Planetary and Cryospheric science domains.
Resumo:
Developing a theoretical framework for pervasive information environments is an enormous goal. This paper aims to provide a small step towards such a goal. The following pages report on our initial investigations to devise a framework that will continue to support locative, experiential and evaluative data from ‘user feedback’ in an increasingly pervasive information environment. We loosely attempt to outline this framework by developing a methodology capable of moving from rapid-deployment of software and hardware technologies, towards a goal of realistic immersive experience of pervasive information. We propose various technical solutions and address a range of problems such as; information capture through a novel model of sensing, processing, visualization and cognition.
Resumo:
Targeted cancer therapy aims to disrupt aberrant cellular signalling pathways. Biomarkers are surrogates of pathway state, but there is limited success in translating candidate biomarkers to clinical practice due to the intrinsic complexity of pathway networks. Systems biology approaches afford better understanding of complex, dynamical interactions in signalling pathways targeted by anticancer drugs. However, adoption of dynamical modelling by clinicians and biologists is impeded by model inaccessibility. Drawing on computer games technology, we present a novel visualisation toolkit, SiViT, that converts systems biology models of cancer cell signalling into interactive simulations that can be used without specialist computational expertise. SiViT allows clinicians and biologists to directly introduce for example loss of function mutations and specific inhibitors. SiViT animates the effects of these introductions on pathway dynamics, suggesting further experiments and assessing candidate biomarker effectiveness. In a systems biology model of Her2 signalling we experimentally validated predictions using SiViT, revealing the dynamics of biomarkers of drug resistance and highlighting the role of pathway crosstalk. No model is ever complete: the iteration of real data and simulation facilitates continued evolution of more accurate, useful models. SiViT will make accessible libraries of models to support preclinical research, combinatorial strategy design and biomarker discovery.
Resumo:
Visualization of vector fields plays an important role in research activities nowadays -- Web applications allow a fast, multi-platform and multi-device access to data, which results in the need of optimized applications to be implemented in both high-performance and low-performance devices -- Point trajectory calculation procedures usually perform repeated calculations due to the fact that several points might lie over the same trajectory -- This paper presents a new methodology to calculate point trajectories over highly-dense and uniformly-distributed grid of points in which the trajectories are forced to lie over the points in the grid -- Its advantages rely on a highly parallel computing architecture implementation and in the reduction of the computational effort to calculate the stream paths since unnecessary calculations are avoided, reusing data through iterations -- As case study, the visualization of oceanic currents through in the web platform is presented and analyzed, using WebGL as the parallel computing architecture and the rendering Application Programming Interface
Resumo:
To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments.