890 resultados para cubic boron nitride
Resumo:
Objectives This study sought to compare the efficacy of passive stent coating with titanium-nitride-oxide (TiNO) with drug-eluting stents releasing zotarolimus (ZES) (Endeavor, Medtronic, Minneapolis, Minnesota). Background Stent coating with TiNO has been shown to reduce restenosis compared with bare-metal stents in experimental and clinical studies. Methods In an assessor-blind noninferiority study, 302 patients undergoing percutaneous coronary intervention were randomized to treatment with TiNO or ZES. The primary endpoint was in-stent late loss at 6 to 8 months, and analysis was by intention to treat. Results Both groups were well balanced with respect to baseline clinical and angiographic characteristics. The TiNO group failed to reach the pre-specified noninferiority margin for the primary endpoint (in-stent late loss: 0.64 ± 0.61 mm vs. 0.47 ± 0.48 mm, difference: 0.16, upper 1-sided 95% confidence interval [CI]: 0.26; pnoninferiority = 0.54), and subsequent superiority testing was in favor of ZES (psuperiority = 0.02). In-segment binary restenosis was lower with ZES (11.1%) than with TiNO (20.5%; psuperiority = 0.04). A stratified analysis of the primary endpoint found particularly pronounced differences between stents among diabetic versus nondiabetic patients (0.90 ± 0.69 mm vs. 0.39 ± 0.38 mm; pinteraction = 0.04). Clinical outcomes showed a similar rate of death (0.7% vs. 0.7%; p = 1.00), myocardial infarction (5.3% vs. 6.7%; p = 0.60), and major adverse cardiac events (21.1% vs. 18.0%, hazard ratio: 1.19, 95% CI: 0.71 to 2.00; p = 0.50) at 1 year. There were no differences in rates of definite or probable stent thrombosis (0.7% vs. 0%; p = 0.51) at 1 year. Conclusions Compared with TiNO, ZES was superior with regard to late loss and binary restenosis. The concept of passive stent coating with TiNO remains inferior to drug-eluting stent technology in reducing restenosis. ([TIDE] Randomized Trial Comparing Titan Stent With Zotarolimus-Eluting Stent: NCT00492908)
Resumo:
We performed a propensity score matched analysis to explore whether TiNOX stents are superior to paclitaxel- (PES) and sirolimus-eluting stents (SES) in routine clinical practice.
Resumo:
We demonstrate a reliable microfabrication process for a combined atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) measurement tool. Integrated cone-shaped sensors with boron doped diamond (BDD) or gold (Au) electrodes were fabricated from commercially available AFM probes. The sensor formation process is based on mature semiconductor processing techniques, including focused ion beam (FIB) machining, and highly selective reactive ion etching (RIE). The fabrication approach preserves the geometry of the original AFM tips resulting in well reproducible nanoscaled sensors. The feasibility and functionality of the fully featured tips are demonstrated by cyclic voltammetry, showing good agreement between the measured and calculated currents of the cone-shaped AFM-SECM electrodes.
Resumo:
Boron is an 'electron deficient' element which has a rather fascinating chemical versatility. In the solid state, the elemental boron has neither a pure covalent nor a pure metallic character. As a result, its vast structural dimensionally and peculiar bonding features hold a unique place among other elements in the periodic table. In order to understand and properly describe these unusual bonding features, a detailed and systematic theoretical study is needed. In this work, I will show that some of the qualitative features of boron nanostructures, including clusters, sheets and nanotubes can easily be extracted from the results of first principles calculations based on density functional theory. Specifically, the size-dependent evolution of topological structures and bonding characteristics of boron clusters, Bn will be discussed. Based on the scenario observed in the boron clusters, the unique properties of boron sheets and boron nanotubes will be described. Moreover, the ballistic electron transport in single-walled carbon nanotubes will be considered. It is expected that the theoretical results obtained in the present thesis will initiate further studies on boron nanostructures, which will be helpful in understanding, designing and realizing boron-based nanoscale devices.
Resumo:
Traditional transportation fuel, petroleum, is limited and nonrenewable, and it also causes pollutions. Hydrogen is considered one of the best alternative fuels for transportation. The key issue for using hydrogen as fuel for transportation is hydrogen storage. Lithium nitride (Li3N) is an important material which can be used for hydrogen storage. The decompositions of lithium amide (LiNH2) and lithium imide (Li2NH) are important steps for hydrogen storage in Li3N. The effect of anions (e.g. Cl-) on the decomposition of LiNH2 has never been studied. Li3N can react with LiBr to form lithium nitride bromide Li13N4Br which has been proposed as solid electrolyte for batteries. The decompositions of LiNH2 and Li2NH with and without promoter were investigated by using temperature programmed decomposition (TPD) and X-ray diffraction (XRD) techniques. It was found that the decomposition of LiNH2 produced Li2NH and NH3 via two steps: LiNH2 into a stable intermediate species (Li1.5NH1.5) and then into Li2NH. The decomposition of Li2NH produced Li, N2 and H2 via two steps: Li2NH into an intermediate species --- Li4NH and then into Li. The kinetic analysis of Li2NH decomposition showed that the activation energies are 533.6 kJ/mol for the first step and 754.2 kJ/mol for the second step. Furthermore, XRD demonstrated that the Li4NH, which was generated in the decomposition of Li2NH, formed a solid solution with Li2NH. In the solid solution, Li4NH possesses a similar cubic structure as Li2NH. The lattice parameter of the cubic Li4NH is 0.5033nm. The decompositions of LiNH2 and Li2NH can be promoted by chloride ion (Cl-). The introduction of Cl- into LiNH2 resulted in the generation of a new NH3 peak at low temperature of 250 °C besides the original NH3 peak at 330 °C in TPD profiles. Furthermore, Cl- can decrease the decomposition temperature of Li2NH by about 110 °C. The degradation of Li3N was systematically investigated with techniques of XRD, Fourier transform infrared (FT-IR) spectroscopy, and UV-visible spectroscopy. It was found that O2 could not affect Li3N at room temperature. However, H2O in air can cause the degradation of Li3N due to the reaction between H2O and Li3N to LiOH. The produced LiOH can further react with CO2 in air to Li2CO3 at room temperature. Furthermore, it was revealed that Alfa-Li3N is more stable in air than Beta-Li3N. The chemical stability of Li13N4Br in air has been investigated by XRD, TPD-MS, and UV-vis absorption as a function of time. The aging process finally leads to the degradation of the Li13N4Br into Li2CO3, lithium bromite (LiBrO2) and the release of gaseous NH3. The reaction order n = 2.43 is the best fitting for the Li13N4Br degradation in air reaction. Li13N4Br energy gap was calculated to be 2.61 eV.
Resumo:
Since 1911, at which time, the age hardening phenomenon of duralumin was discovered by Film, much research has been carried on investigating the various alloy systems. The successful application of age hardening to the copper aluminum system (duralumin) has indicated the possibility of hardening practically all the metals in the same way.
Resumo:
Boron is an element whose metallurgical possibilities have never been fully investigated. The principal reason for this fact seems to lie in the difficulties encountered in preparing elemental boron and its various intermetallic compounds.
Resumo:
Many attempts have been made to improve iron and steel and their alloys by the addition of boron. The results obtained were not encouraging for the reason that the amount of boron used, generally from 0.2 to 2.0 per cent is altogether too high. This percentage of boron renders the product hard and brittle and of late the experiments with boron in this connection have been practically abandoned.