860 resultados para critical theory
Resumo:
The Scottish Legendary is a fourteenth century collection of saints’ lives in Older Scots. The prologue describes the lives as ‘merroure’ (mirror) to readers from which ‘men ma ensample ta’ (people may take example). Thus, the Legendary sets out to reveal how the reader is (mirror) thereby moving her to wish to become how she should be (exemplarity). This dissertation argues that, rather than encouraging devotion to saints along purely dogmatic lines, the Legendary transforms the reader’s selfhood by engaging her affectively, i.e. on an emotional and somatic level. By provoking the reader affectively, the text puts the reader into what Julia Kristeva has described as a ‘semiotic state’ which harks back to the reader’s or listener’s pre-cultural, pre-subjective self (Kristeva, 1984). Thus, the text disrupts the reader’s conception of herself as a complete, hermetic subjectivity, thereby dissolving the boundaries of the reader’s self. The Legendary most powerfully infiltrates the reader’s sense of self along these lines in the moments in which female saints’ bodies are tortured and dismembered. These scenes foreground the permeability of human flesh as well as its powerful influence over selfhood. Such images of abjection are, in Kristeva’s words, ‘opposed to I’; by confronting the reader with the disintegration of subjectivity in abjection, the text incites the reader to likewise experience herself as abject, i.e. disintegrable and permeable (Kristeva 1982). As I shall demonstrate, Kristeva’s psychoanalytic theory of the formation of the self offers a fruitful framework for understanding the processes of self-knowledge through reading that these saints’ lives inspire.
Resumo:
We have considered a Bose gas in an anisotropic potential. Applying the the Gross-Pitaevskii Equation (GPE) for a confined dilute atomic gas, we have used the methods of optimized perturbation theory and self-similar root approximants, to obtain an analytical formula for the critical number of particles as a function of the anisotropy parameter for the potential. The spectrum of the GPE is also discussed.
Resumo:
We study the question of stability of the ground state of a scalar theory which is a generalization of the phi(3) theory and has some similarity to gravity with a cosmological constant. We show that the ground state of the theory at zero temperature becomes unstable above a certain critical temperature, which is evaluated in closed form at high temperature.
Resumo:
We prove a Goldstone theorem in thermal relativistic quantum field theory, which relates spontaneous symmetry breaking to the rate of spacelike decay of the two-point function. The critical rate of fall-off coincides with that of the massless free scalar field theory. Related results and open problems are briefly discussed. (C) 2011 American Institute of Physics. [doi:10.1063/1.3526961]
Resumo:
In a quantum critical chain, the scaling regime of the energy and momentum of the ground state and low-lying excitations are described by conformal field theory (CFT). The same holds true for the von Neumann and Renyi entropies of the ground state, which display a universal logarithmic behavior depending on the central charge. In this Letter we generalize this result to those excited states of the chain that correspond to primary fields in CFT. It is shown that the nth Renyi entropy is related to a 2n-point correlator of primary fields. We verify this statement for the critical XX and XXZ chains. This result uncovers a new link between quantum information theory and CFT.
Resumo:
We analyze the finite-size corrections to entanglement in quantum critical systems. By using conformal symmetry and density functional theory, we discuss the structure of the finite-size contributions to a general measure of ground state entanglement, which are ruled by the central charge of the underlying conformal field theory. More generally, we show that all conformal towers formed by an infinite number of excited states (as the size of the system L -> infinity) exhibit a unique pattern of entanglement, which differ only at leading order (1/L)(2). In this case, entanglement is also shown to obey a universal structure, given by the anomalous dimensions of the primary operators of the theory. As an illustration, we discuss the behavior of pairwise entanglement for the eigenspectrum of the spin-1/2 XXZ chain with an arbitrary length L for both periodic and twisted boundary conditions.
Resumo:
We present an analysis of previously published measurements of the London penetration depth of layered organic superconductors. The predictions of the BCS theory of superconductivity are shown to disagree with the measured zero temperature, in plane, London penetration depth by up to two orders of magnitude. We find that fluctuations in the phase of the superconducting order parameter do not determine the superconducting critical temperature as the critical temperature predicted for a Kosterlitz–Thouless transition is more than an order of magnitude greater than is found experimentally for some materials. This places constraints on theories of superconductivity in these materials.
Resumo:
The classical model of capillary equilibrium in cylindrical pores is modified here by the introduction of molecular concepts and the solid fluid interaction potential. The new approach accurately predicts capillary coexistence and criticality, with results quantitatively matching those from density functional theory for nitrogen adsorption, while also predicting condensation pressures in agreement with reported experimental findings for MCM-41. The larger critical pore size for nitrogen adsorption in these materials, however, suggests a modification of the potential function parameters, evaluated here from data for hydroxylated silica.
Resumo:
We report detailed measurements of the interlayer magnetoresistance of the layered organic superconductor kappa-(BEDT-TTF)(2)Cu(SCN)(2) for temperatures down to 0.5 K and fields up to 30 T. The upper critical field is determined from the resistive transition for a wide range of temperatures and field directions. For magnetic fields parallel to the layers, the upper critical field increases approximately linearly with decreasing temperature. The upper critical field at low temperatures is compared to the Pauli paramagnetic limit, at which singlet superconductivity should be destroyed by the Zeeman splitting of the electron spins. The measured value is comparable to a value for the paramagnetic limit calculated from thermodynamic quantities but exceeds the limit calculated from BCS theory. The angular dependence of the upper critical field shows a cusplike feature for fields close to the layers, consistent with decoupled layers.
Resumo:
We present a mathematical framework that combines extinction-colonization dynamics with the dynamics of patch succession. We draw an analogy between the epidemiological categorization of individuals (infected, susceptible, latent and resistant) and the patch structure of a spatially heterogeneous landscape (occupied-suitable, empty-suitable, occupied-unsuitable and empty-unsuitable). This approach allows one to consider life-history attributes that influence persistence in patchy environments (e.g., longevity, colonization ability) in concert with extrinsic processes (e.g., disturbances, succession) that lead to spatial heterogeneity in patch suitability. It also allows the incorporation of seed banks and other dormant life forms, thus broadening patch occupancy dynamics to include sink habitats. We use the model to investigate how equilibrium patch occupancy is influenced by four critical parameters: colonization rate? extinction rate, disturbance frequency and the rate of habitat succession. This analysis leads to general predictions about how the temporal scaling of patch succession and extinction-colonization dynamics influences long-term persistence. We apply the model to herbaceous, early-successional species that inhabit open patches created by periodic disturbances. We predict the minimum disturbance frequency required far viable management of such species in the Florida scrub ecosystem. (C) 2001 Academic Press.
Resumo:
A critical set in a latin square of order n is a set of entries in a latin square which can be embedded in precisely one latin square of order n. Also, if any element of the critical set is deleted, the remaining set can be embedded in more than one latin square of order n. In this paper we find smallest weak and smallest totally weak critical sets for all the latin squares of orders six and seven. Moreover, we computationally prove that there is no (totally) weak critical set in the back circulant latin square of order five and we find a totally weak critical set of size seven in the other main class of latin squares of order five.
Resumo:
The quasi mode theory of macroscopic quantization in quantum optics and cavity QED developed by Dalton, Barnett and Knight is generalized. This generalization allows for cases in which two or more quasi permittivities, along with their associated mode functions, are needed to describe the classical optics device. It brings problems such as reflection and refraction at a dielectric boundary, the linear coupler, and the coupling of two optical cavities within the scope of the theory. For the most part, the results that are obtained here are simple generalizations of those obtained in previous work. However the coupling constants, which are of great importance in applications of the theory, are shown to contain significant additional terms which cannot be 'guessed' from the simpler forms. The expressions for the coupling constants suggest that the critical factor in determining the strength of coupling between a pair of quasi modes is their degree of spatial overlap. In an accompanying paper a fully quantum theoretic derivation of the laws of reflection and refraction at a boundary is given as an illustration of the generalized theory. The quasi mode picture of this process involves the annihilation of a photon travelling in the incident region quasi mode, and the subsequent creation of a photon in either the incident region or transmitted region quasi modes.