981 resultados para cosmological parameters from CMBR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic resonance imaging, with its exquisite soft tissue contrast, is an ideal modality for investigating spinal cord pathology. While conventional MRI techniques are very sensitive for spinal cord pathology, their specificity is somewhat limited. Diffusion MRI is an advanced technique which is a very sensitive and specific indicator of the integrity of white matter tracts. Diffusion imaging has been shown to detect early ischemic changes in white matter, while conventional imaging demonstrates no change. By acquiring the complete apparent diffusion tensor (ADT), tissue diffusion properties can be expressed in terms of quantitative and rotationally invariant parameters. ^ Systematic study of SCI in vivo requires controlled animal models such as the popular rat model. To date, studies of spinal cord using ADT imaging have been performed exclusively in fixed, excised spinal cords, introducing inevitable artifacts and losing the benefits of MRI's noninvasive nature. In vivo imaging reflects the actual in vivo tissue properties, and allows each animal to be imaged at multiple time points, greatly reducing the number of animals required to achieve statistical significance. Because the spinal cord is very small, the available signal-to-noise ratio (SNR) is very low. Prior spin-echo based ADT studies of rat spinal cord have relied on high magnetic field strengths and long imaging times—on the order of 10 hours—for adequate SNR. Such long imaging times are incompatible with in vivo imaging, and are not relevant for imaging the early phases following SCI. Echo planar imaging (EPI) is one of the fastest imaging methods, and is popular for diffusion imaging. However, EPI further lowers the image SNR, and is very sensitive to small imperfections in the magnetic field, such as those introduced by the bony spine. Additionally, The small field-of-view (FOV) needed for spinal cord imaging requires large imaging gradients which generate EPI artifacts. The addition of diffusion gradients introduces yet further artifacts. ^ This work develops a method for rapid EPI-based in vivo diffusion imaging of rat spinal cord. The method involves improving the SNR using an implantable coil; reducing magnetic field inhomogeneities by means of an autoshim, and correcting EPI artifacts by post-processing. New EPI artifacts due to diffusion gradients described, and post-processing correction techniques are developed. ^ These techniques were used to obtain rotationally invariant diffusion parameters from 9 animals in vivo, and were validated using the gold-standard, but slow, spinecho based diffusion sequence. These are the first reported measurements of the ADT in spinal cord in vivo . ^ Many of the techniques described are equally applicable toward imaging of human spinal cord. We anticipate that these techniques will aid in evaluating and optimizing potential therapies, and will lead to improved patient care. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The International GNSS Service (IGS) provides operational products for the GPS and GLONASS constellation. Homogeneously processed time series of parameters from the IGS are only available for GPS. Reprocessed GLONASS series are provided only by individual Analysis Centers (i. e. CODE and ESA), making it difficult to fully include the GLONASS system into a rigorous GNSS analysis. In view of the increasing number of active GLONASS satellites and a steadily growing number of GPS+GLONASS-tracking stations available over the past few years, Technische Universität Dresden, Technische Universität München, Universität Bern and Eidgenössische Technische Hochschule Zürich performed a combined reprocessing of GPS and GLONASS observations. Also, SLR observations to GPS and GLONASS are included in this reprocessing effort. Here, we show only SLR results from a GNSS orbit validation. In total, 18 years of data (1994–2011) have been processed from altogether 340 GNSS and 70 SLR stations. The use of GLONASS observations in addition to GPS has no impact on the estimated linear terrestrial reference frame parameters. However, daily station positions show an RMS reduction of 0.3 mm on average for the height component when additional GLONASS observations can be used for the time series determination. Analyzing satellite orbit overlaps, the rigorous combination of GPS and GLONASS neither improves nor degrades the GPS orbit precision. For GLONASS, however, the quality of the microwave-derived GLONASS orbits improves due to the combination. These findings are confirmed using independent SLR observations for a GNSS orbit validation. In comparison to previous studies, mean SLR biases for satellites GPS-35 and GPS-36 could be reduced in magnitude from −35 and −38 mm to −12 and −13 mm, respectively. Our results show that remaining SLR biases depend on the satellite type and the use of coated or uncoated retro-reflectors. For Earth rotation parameters, the increasing number of GLONASS satellites and tracking stations over the past few years leads to differences between GPS-only and GPS+GLONASS combined solutions which are most pronounced in the pole rate estimates with maximum 0.2 mas/day in magnitude. At the same time, the difference between GLONASS-only and combined solutions decreases. Derived GNSS orbits are used to estimate combined GPS+GLONASS satellite clocks, with first results presented in this paper. Phase observation residuals from a precise point positioning are at the level of 2 mm and particularly reveal poorly modeled yaw maneuver periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES To compare biomechanical rupture risk parameters of asymptomatic, symptomatic and ruptured abdominal aortic aneurysms (AAA) using finite element analysis (FEA). STUDY DESIGN Retrospective biomechanical single center analysis of asymptomatic, symptomatic, and ruptured AAAs. Comparison of biomechanical parameters from FEA. MATERIALS AND METHODS From 2011 to 2013 computed tomography angiography (CTA) data from 30 asymptomatic, 15 symptomatic, and 15 ruptured AAAs were collected consecutively. FEA was performed according to the successive steps of AAA vessel reconstruction, segmentation and finite element computation. Biomechanical parameters Peak Wall Rupture Risk Index (PWRI), Peak Wall Stress (PWS), and Rupture Risk Equivalent Diameter (RRED) were compared among the three subgroups. RESULTS PWRI differentiated between asymptomatic and symptomatic AAAs (p < .0004) better than PWS (p < .1453). PWRI-dependent RRED was higher in the symptomatic subgroup compared with the asymptomatic subgroup (p < .0004). Maximum AAA external diameters were comparable between the two groups (p < .1355). Ruptured AAAs showed the highest values for external diameter, total intraluminal thrombus volume, PWS, RRED, and PWRI compared with asymptomatic and symptomatic AAAs. In contrast with symptomatic and ruptured AAAs, none of the asymptomatic patients had a PWRI value >1.0. This threshold value might identify patients at imminent risk of rupture. CONCLUSIONS From different FEA derived parameters, PWRI distinguishes most precisely between asymptomatic and symptomatic AAAs. If elevated, this value may represent a negative prognostic factor for asymptomatic AAAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE This study presents the first in vivo real-time optical tissue characterization during image-guided percutaneous intervention using near-infrared diffuse optical spectroscopy sensing at the tip of a needle. The goal of this study was to indicate transition boundaries from healthy tissue to tumors, namely, hepatic carcinoma, based on the real-time feedback derived from the optical measurements. MATERIALS AND METHODS Five woodchucks with hepatic carcinoma were used for this study. The woodchucks were imaged with contrast-enhanced cone beam computed tomography with a flat panel detector C-arm system to visualize the carcinoma in the liver. In each animal, 3 insertions were performed, starting from the skin surface toward the hepatic carcinoma under image guidance. In 2 woodchucks, each end point of the insertion was confirmed with pathologic examination of a biopsy sample. While advancing the needle in the animals under image guidance such as fluoroscopy overlaid with cone beam computed tomography slice and ultrasound, optical spectra were acquired at the distal end of the needles. Optical tissue characterization was determined by translating the acquired optical spectra into clinical parameters such as blood, water, lipid, and bile fractions; tissue oxygenation levels; and scattering amplitude related to tissue density. The Kruskal-Wallis test was used to study the difference in the derived clinical parameters from the measurements performed within the healthy tissue and the hepatic carcinoma. Kurtoses were calculated to assess the dispersion of these parameters within the healthy and carcinoma tissues. RESULTS Blood and lipid volume fractions as well as tissue oxygenation and reduced scattering amplitude showed to be significantly different between the healthy part of the liver and the hepatic carcinoma (P < 0.05) being higher in normal liver tissue. A decrease in blood and lipid volume fractions and tissue oxygenation as well as an increase in scattering amplitude were observed when the tip of the needle crossed the margin from the healthy liver tissue to the carcinoma. The kurtosis for each derived clinical parameter was high in the hepatic tumor as compared with that in the healthy liver indicating intracarcinoma variability. CONCLUSIONS Tissue blood content, oxygenation level, lipid content, and tissue density all showed significant differences when the needle tip was guided from the healthy tissue to the carcinoma and can therefore be used to identify tissue boundaries during percutaneous image-guided interventions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The robotics-assisted tilt table (RATT), including actuators for tilting and cyclical leg movement, is used for rehabilitation of severely disabled neurological patients. Following further engineering development of the system, i.e. the addition of force sensors and visual bio-feedback, patients can actively participate in exercise testing and training on the device. Peak cardiopulmonary performance parameters were previously investigated, but it also important to compare submaximal parameters with standard devices. The aim of this study was to evaluate the feasibility of the RATT for estimation of submaximal exercise thresholds by comparison with a cycle ergometer and a treadmill. METHODS: 17 healthy subjects randomly performed six maximal individualized incremental exercise tests, with two tests on each of the three exercise modalities. The ventilatory anaerobic threshold (VAT) and respiratory compensation point (RCP) were determined from breath-by-breath data. RESULTS: VAT and RCP on the RATT were lower than the cycle ergometer and the treadmill: oxygen uptake (V'O2) at VAT was [mean (SD)] 1.2 (0.3), 1.5 (0.4) and 1.6 (0.5) L/min, respectively (p < 0.001); V'O2 at RCP was 1.7 (0.4), 2.3 (0.8) and 2.6 (0.9) L/min, respectively (p = 0.001). High correlations for VAT and RCP were found between the RATT vs the cycle ergometer and RATT vs the treadmill (R on the range 0.69-0.80). VAT and RCP demonstrated excellent test-retest reliability for all three devices (ICC from 0.81 to 0.98). Mean differences between the test and retest values on each device were close to zero. The ventilatory equivalent for O2 at VAT for the RATT and cycle ergometer were similar and both were higher than the treadmill. The ventilatory equivalent for CO2 at RCP was similar for all devices. Ventilatory equivalent parameters demonstrated fair-to-excellent reliability and repeatability. CONCLUSIONS: It is feasible to use the RATT for estimation of submaximal exercise thresholds: VAT and RCP on the RATT were lower than the cycle ergometer and the treadmill, but there were high correlations between the RATT vs the cycle ergometer and vs the treadmill. Repeatability and test-retest reliability of all submaximal threshold parameters from the RATT were comparable to those of standard devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential for the direct analysis of enzyme reactions by fast atom bombardment (FAB) mass spectrometry has been investigated. Conditions are presented for the maintenance of enzymatic activity under FAB conditions along with FAB mass spectrometric data showing that these conditions can be applied to solutions of enzyme and substrate to follow enzymatic reactions inside the mass spectrometer in real-time. In addition, enzyme kinetic behavior under FAB mass spectrometric conditions is characterized using trypsin and its assay substrate, TAME, as an enzyme-substrate reaction model. These results show that two monitoring methods can be utilized to follow reactions by FAB mass spectrometry. The advantages of each method are discussed and illustrated by obtaining kinetic parameters from the direct analysis of enzyme reactions with assay or peptide substrates. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

My dissertation focuses on developing methods for gene-gene/environment interactions and imprinting effect detections for human complex diseases and quantitative traits. It includes three sections: (1) generalizing the Natural and Orthogonal interaction (NOIA) model for the coding technique originally developed for gene-gene (GxG) interaction and also to reduced models; (2) developing a novel statistical approach that allows for modeling gene-environment (GxE) interactions influencing disease risk, and (3) developing a statistical approach for modeling genetic variants displaying parent-of-origin effects (POEs), such as imprinting. In the past decade, genetic researchers have identified a large number of causal variants for human genetic diseases and traits by single-locus analysis, and interaction has now become a hot topic in the effort to search for the complex network between multiple genes or environmental exposures contributing to the outcome. Epistasis, also known as gene-gene interaction is the departure from additive genetic effects from several genes to a trait, which means that the same alleles of one gene could display different genetic effects under different genetic backgrounds. In this study, we propose to implement the NOIA model for association studies along with interaction for human complex traits and diseases. We compare the performance of the new statistical models we developed and the usual functional model by both simulation study and real data analysis. Both simulation and real data analysis revealed higher power of the NOIA GxG interaction model for detecting both main genetic effects and interaction effects. Through application on a melanoma dataset, we confirmed the previously identified significant regions for melanoma risk at 15q13.1, 16q24.3 and 9p21.3. We also identified potential interactions with these significant regions that contribute to melanoma risk. Based on the NOIA model, we developed a novel statistical approach that allows us to model effects from a genetic factor and binary environmental exposure that are jointly influencing disease risk. Both simulation and real data analyses revealed higher power of the NOIA model for detecting both main genetic effects and interaction effects for both quantitative and binary traits. We also found that estimates of the parameters from logistic regression for binary traits are no longer statistically uncorrelated under the alternative model when there is an association. Applying our novel approach to a lung cancer dataset, we confirmed four SNPs in 5p15 and 15q25 region to be significantly associated with lung cancer risk in Caucasians population: rs2736100, rs402710, rs16969968 and rs8034191. We also validated that rs16969968 and rs8034191 in 15q25 region are significantly interacting with smoking in Caucasian population. Our approach identified the potential interactions of SNP rs2256543 in 6p21 with smoking on contributing to lung cancer risk. Genetic imprinting is the most well-known cause for parent-of-origin effect (POE) whereby a gene is differentially expressed depending on the parental origin of the same alleles. Genetic imprinting affects several human disorders, including diabetes, breast cancer, alcoholism, and obesity. This phenomenon has been shown to be important for normal embryonic development in mammals. Traditional association approaches ignore this important genetic phenomenon. In this study, we propose a NOIA framework for a single locus association study that estimates both main allelic effects and POEs. We develop statistical (Stat-POE) and functional (Func-POE) models, and demonstrate conditions for orthogonality of the Stat-POE model. We conducted simulations for both quantitative and qualitative traits to evaluate the performance of the statistical and functional models with different levels of POEs. Our results showed that the newly proposed Stat-POE model, which ensures orthogonality of variance components if Hardy-Weinberg Equilibrium (HWE) or equal minor and major allele frequencies is satisfied, had greater power for detecting the main allelic additive effect than a Func-POE model, which codes according to allelic substitutions, for both quantitative and qualitative traits. The power for detecting the POE was the same for the Stat-POE and Func-POE models under HWE for quantitative traits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cryoablation for small renal tumors has demonstrated sufficient clinical efficacy over the past decade as a non-surgical nephron-sparing approach for treating renal masses for patients who are not surgical candidates. Minimally invasive percutaneous cryoablations have been performed with image guidance from CT, ultrasound, and MRI. During the MRI-guided cryoablation procedure, the interventional radiologist visually compares the iceball size on monitoring images with respect to the original tumor on separate planning images. The comparisons made during the monitoring step are time consuming, inefficient and sometimes lack the precision needed for decision making, requiring the radiologist to make further changes later in the procedure. This study sought to mitigate uncertainty in these visual comparisons by quantifying tissue response to cryoablation and providing visualization of the response during the procedure. Based on retrospective analysis of MR-guided cryoablation patient data, registration and segmentation algorithms were investigated and implemented for periprocedural visualization to deliver iceball position/size with respect to planning images registered within 3.3mm with at least 70% overlap and a quantitative logit model was developed to relate perfusion deficit in renal parenchyma visualized in verification images as a result of iceball size visualized in monitoring images. Through retrospective study of 20 patient cases, the relationship between likelihood of perfusion loss in renal parenchyma and distance within iceball was quantified and iteratively fit to a logit curve. Using the parameters from the logit fit, the margin for 95% perfusion loss likelihood was found to be 4.28 mm within the iceball. The observed margin corresponds well with the clinically accepted margin of 3-5mm within the iceball. In order to display the iceball position and perfusion loss likelihood to the radiologist, algorithms were implemented to create a fast segmentation and registration module which executed in under 2 minutes, within the clinically-relevant 3 minute monitoring period. Using 16 patient cases, the average Hausdorff distance was reduced from 10.1mm to 3.21 mm with average DSC increased from 46.6% to 82.6% before and after registration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a technical description in html format of simple fortran programs for Macintosh for the morphometric analysis of tests planktonic foraminifera under reflected light, with special focus on the Neogene group of Globorotalia menardii. The second part of this report gives information and performance tests about the development of AMOR (Automated Measurement system for the mORphometry of microfossils). AMOR is Windows based and helps to orientate and collect digital images of menardiform globorotalids. The above fortran programs may be useful to extract and analyze some morphometric parameters from images collected with AMOR. After unzipping the archive file please open the Start.html file using a common web browser like firefox. In case of any questions or problems, please contact Michael W. Knappertsbusch (mailto:michael.knappertsbusch@unibas.ch).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of Pre- and Protohistoric anthropogenic land cover changes needs to be quantified i) to establish a baseline for comparison with current human impact on the environment and ii) to separate it from naturally occurring changes in our environment. Results are presented from the simple, adaptation-driven, spatially explicit Global Land Use and technological Evolution Simulator (GLUES) for pre-Bronze age demographic, technological and economic change. Using scaling parameters from the History Database of the Global Environment as well as GLUES-simulated population density and subsistence style, the land requirement for growing crops is estimated. The intrusion of cropland into potentially forested areas is translated into carbon loss due to deforestation with the dynamic global vegetation model VECODE. The land demand in important Prehistoric growth areas - converted from mostly forested areas - led to large-scale regional (country size) deforestation of up to 11% of the potential forest. In total, 29 Gt carbon were lost from global forests between 10 000 BC and 2000 BC and were replaced by crops; this value is consistent with other estimates of Prehistoric deforestation. The generation of realistic (agri-)cultural development trajectories at a regional resolution is a major strength of GLUES. Most of the pre-Bronze age deforestation is simulated in a broad farming belt from Central Europe via India to China. Regional carbon loss is, e.g., 5 Gt in Europe and the Mediterranean, 6 Gt on the Indian subcontinent, 18 Gt in East and Southeast Asia, or 2.3 Gt in subsaharan Africa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effects of pH on movement behaviors of the harmful algal bloom causing raphidophyte Heterosigma akashiwo. Motility parameters from >8000 swimming tracks of individual cells were quantified using 3D digital video analysis over a 6-h period in 3 pH treatments reflecting marine carbonate chemistry during the pre-industrial era, currently, and the year 2100. Movement behaviors were investigated in two different acclimation-to-target-pH conditions: instantaneous exposure and acclimation of cells for at least 11 generations. There was no negative impairment of cell motility when exposed to elevated PCO2 (i.e., low pH) conditions but there were significant behavioral responses. Irrespective of acclimation condition, lower pH significantly increased downward velocity and frequency of downward swimming cells (p < 0.001). Rapid exposure to lower pH resulted in 9% faster downward vertical velocity and up to 19% more cells swimming downwards (p < 0.001). Compared to pH-shock experiments, pre-acclimation of cells to target pH resulted in ~30% faster swimming speed and up to 46% faster downward velocities (all p < 0.001). The effect of year 2100 PCO2 levels on population diffusivity in pre-acclimated cultures was >2-fold greater than in pH-shock treatments (2.2 × 105 µm**2/s vs. 8.4 × 104 µm**2/s). Predictions from an advection-diffusion model, suggest that as PCO2 increased the fraction of the population aggregated at the surface declined, and moved deeper in the water column. Enhanced downward swimming of H. akashiwo at low pH suggests that these behavioral responses to elevated PCO2 could reduce the likelihood of dense surface slick formation of H. akashiwo through reductions in light exposure or growth independent surface aggregations. We hypothesize that the HAB alga's response to higher PCO2 may exploit the signaling function of high PCO2 as indicative of net heterotrophy in the system, thus indicative of high predation rates or depletion of nutrients.

Relevância:

100.00% 100.00%

Publicador: