933 resultados para compact objects
Resumo:
We have fabricated an ultra-compact 4×4 optical matrix on InP/InGaAsP material. 1×4 MMI couplers and TIR mirrors are employed to produce a compact 1×2 mm2 device. A CH4/H2/O2 RIE dry etch process has been used to realize two-level dry etching: deep-etch for both the MMI couplers and the mirrors and shallow-etch for the rest of the routing waveguides. It was found that a metal/dielectric bilayer mask is essential for multi-dry-etch processes and high profile verticality. We have found a Ti intermediate mask for the deep-etch process which is removable by SF6 dry-etch before the following shallow process. Dry-etch removal of the intermediate mask is necessary to protect the deep-etched mirror sidewall.
Resumo:
Compact Fluorescent Lamps (CFL) incorporating electronic ballasts are widely used in lighting. In many cases the ability to dim the lamp is a requirement Dimming can be achieved by varying the voltage supplied to the inverter or by changing the switching frequency of the inverter. The effect of dimming by both approaches on the power losses in the inverter is studied in this work. The lamp and associated inverter has been modeled in PSPICE, using a behavioral model for the CFL. Predicted losses are in good agreement with experimental data obtained from calorimetry. The model was then used to determine the distribution of losses within the inverter, enabling a comparison of the effects of the two dimming methods to be made. © 2006 IEEE.
Resumo:
In this study an inductor-less piezoelectric transformer (PT) based ballast for a 5 W CFL has been designed and simulated. The predictions of circuit currents and losses closely match experimentally measured values. The total simulated loss figure was confirmed against practically determined losses using a precision mini-calorimeter. Using simulation to disaggregate the total loss figure, it is seen that the PT makes the largest contribution to the total losses in such ballast.
Resumo:
In this paper we explore the possibility of using the equations of a well known compact model for CMOS transistors as a parameterized compact model for a variety of FET based nano-technology devices. This can turn out to be a practical preliminary solution for system level architectural researchers, who could simulate behaviourally large scale systems, while more physically based models become available for each new device. We have used a four parameter version of the EKV model equations and verified that fitting errors are similar to those when using them for standard CMOS FET transistors. The model has been used for fitting measured data from three types of FET nano-technology devices obeying different physics, for different fabrication steps, and under different programming conditions. © 2009 IEEE NANO Organizers.
Resumo:
Commercially available integrated compact fluorescent lamps (CFLs) use self-resonant ballasts on grounds of simplicity and cost. To understand how to improve ballast efficiency, it is necessary to quantify the losses. The losses occurring in these ballasts have been directly measured using a precision mini-calorimeter. In addition, a Pspice model has been used to simulate the performance of an 18 W integrated CFL. The lamp has been represented by a behavioural model and Jiles-Atherton equations were used to model the current transformer core. The total loss is in close agreement with measurements from the mini-calorimeter, confirming the accuracy of the model. The total loss was then disaggregated into component losses by simulation, showing that the output inductor is the primary source of loss, followed by the inverter switches. © 2011 The Institution of Engineering and Technology.
Resumo:
To explore the neural mechanisms related to representation of the manipulation dynamics of objects, we performed whole-brain fMRI while subjects balanced an object in stable and highly unstable states and while they balanced a rigid object and a flexible object in the same unstable state, in all cases without vision. In this way, we varied the extent to which an internal model of the manipulation dynamics was required in the moment-to-moment control of the object's orientation. We hypothesized that activity in primary motor cortex would reflect the amount of muscle activation under each condition. In contrast, we hypothesized that cerebellar activity would be more strongly related to the stability and complexity of the manipulation dynamics because the cerebellum has been implicated in internal model-based control. As hypothesized, the dynamics-related activation of the cerebellum was quite different from that of the primary motor cortex. Changes in cerebellar activity were much greater than would have been predicted from differences in muscle activation when the stability and complexity of the manipulation dynamics were contrasted. On the other hand, the activity of the primary motor cortex more closely resembled the mean motor output necessary to execute the task. We also discovered a small region near the anterior edge of the ipsilateral (right) inferior parietal lobule where activity was modulated with the complexity of the manipulation dynamics. We suggest that this is related to imagining the location and motion of an object with complex manipulation dynamics.
Semantic Discriminant mapping for classification and browsing of remote sensing textures and objects
Resumo:
We present a new approach based on Discriminant Analysis to map a high dimensional image feature space onto a subspace which has the following advantages: 1. each dimension corresponds to a semantic likelihood, 2. an efficient and simple multiclass classifier is proposed and 3. it is low dimensional. This mapping is learnt from a given set of labeled images with a class groundtruth. In the new space a classifier is naturally derived which performs as well as a linear SVM. We will show that projecting images in this new space provides a database browsing tool which is meaningful to the user. Results are presented on a remote sensing database with eight classes, made available online. The output semantic space is a low dimensional feature space which opens perspectives for other recognition tasks. © 2005 IEEE.
Resumo:
Many types of oceanic physical phenomena have a wide range in both space and time. In general, simplified models, such as shallow water model, are used to describe these oceanic motions. The shallow water equations are widely applied in various oceanic and atmospheric extents. By using the two-layer shallow water equations, the stratification effects can be considered too. In this research, the sixth-order combined compact method is investigated and numerically implemented as a high-order method to solve the two-layer shallow water equations. The second-order centered, fourth-order compact and sixth-order super compact finite difference methods are also used to spatial differencing of the equations. The first part of the present work is devoted to accuracy assessment of the sixth-order super compact finite difference method (SCFDM) and the sixth-order combined compact finite difference method (CCFDM) for spatial differencing of the linearized two-layer shallow water equations on the Arakawa's A-E and Randall's Z numerical grids. Two general discrete dispersion relations on different numerical grids, for inertia-gravity and Rossby waves, are derived. These general relations can be used for evaluation of the performance of any desired numerical scheme. For both inertia-gravity and Rossby waves, minimum error generally occurs on Z grid using either the sixth-order SCFDM or CCFDM methods. For the Randall's Z grid, the sixth-order CCFDM exhibits a substantial improvement , for the frequency of the barotropic and baroclinic modes of the linear inertia-gravity waves of the two layer shallow water model, over the sixth-order SCFDM. For the Rossby waves, the sixth-order SCFDM shows improvement, for the barotropic and baroclinic modes, over the sixth-order CCFDM method except on Arakawa's C grid. In the second part of the present work, the sixth-order CCFDM method is used to solve the one-layer and two-layer shallow water equations in their nonlinear form. In one-layer model with periodic boundaries, the performance of the methods for mass conservation is compared. The results show high accuracy of the sixth-order CCFDM method to simulate a complex flow field. Furthermore, to evaluate the performance of the method in a non-periodic domain the sixth-order CCFDM is applied to spatial differencing of vorticity-divergence-mass representation of one-layer shallow water equations to solve a wind-driven current problem with no-slip boundary conditions. The results show good agreement with published works. Finally, the performance of different schemes for spatial differencing of two-layer shallow water equations on Z grid with periodic boundaries is investigated. Results illustrate the high accuracy of combined compact method.
Resumo:
In a fibre-optic communication network, the wavelength-division multiplexing (WDM) technique enables an expansion of the data-carrying capacity of optical fibres. This can be achieved by transmitting different channels on a single optical fibre, with each channel modulating a different wavelength. In order to access and manipulate these channels at a node of the network, a compact holographic optical switch is designed, modelled, and constructed. The structure of such a switch consists of a series of optical components which are used to collimate the beam from the input, de-multiplex each individual wavelength into separated channels, manipulate the separated channels, and reshape the beam to the output. A spatial light modulator (SLM) is crucial in this system, offering control and flexibility at the channel manipulation stage, and providing the ability to redirect light into the desired output fibre. This is achieved by the use of a 2-D analogue phase computer generated hologram (CGH) based on liquid crystal on silicon (LCOS) technology. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).