998 resultados para cobalt bromide catalyst
Resumo:
A hydrothermal reaction of a mixture of cobalt salt, 5-nitro isophthalic acid and triazole (compound I), 3-aminotriazole (3-AT) (compound II) and 3,5-diaminotriazole (compound III) at 220 degrees C for a day resulted in the isolation of three different, but related, compounds containing cobalt clusters. The three-dimensional compounds have Co-5 (compound-I) and Co-4 (compound-II and compound-III) clusters connected through the carboxylate and triazolate forming structures with pcu net (compound-I and compound-II) and a graphite-related net (compound-III). The water molecules (coordinated and lattice) can be readily re-adsorbed by the structure of compound-I, whereas the removal of the water molecule leads to a collapse of the structures of compound-II and compound-III. The TGA studies suggest the possibility of an intermediate structure for compound-1, which was investigated using in situ single crystal to single crystal (SCSC) transformations. The identification of an intermediate structure during the dehydration/hydration cycle in compound-I is important and provides important pointers about the dynamics of the water molecules in these compounds. Compound-I was also investigated in detail using a variety of spectroscopic techniques such as IR, UV-Vis spectroscopy etc. Magnetic studies on the synthesized compounds indicate anti-ferromagnetic behavior.
Resumo:
The synthesis of cobalt-doped ZnO nanowires is achieved using a simple, metal salt decomposition growth technique. A sequence of drop casting on a quartz substrate held at 100 degrees C and annealing results in the growth of nanowires of average (modal) length similar to 200 nm and diameter of 15 +/- 4 nm and consequently an aspect ratio of similar to 13. A variation in the synthesis process, where the solution of mixed salts is deposited on the substrate at 25 degrees C, yields a grainy film structure which constitutes a useful comparator case. X-ray diffraction shows a preferred 0001] growth direction for the nanowires while a small unit cell volume contraction for Co-doped samples and data from Raman spectroscopy indicate incorporation of the Co dopant into the lattice; neither technique shows explicit evidence of cobalt oxides. Also the nanowire samples display excellent optical transmission across the entire visible range, as well as strong photoluminescence (exciton emission) in the near UV, centered at 3.25 eV. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Divalent metal complexes of general formula M(2-nb)(2)(mc)(2)].2(2-nbH), where M = Co(II), Ni(II), Cu(II) or Zn(II), 2-nbH = 2-nitrobenzoic acid and mc = methyl carbazate (NH2NHCOOCH3), have been prepared and characterized by physicochemical and spectroscopic methods. Single-crystal X-ray study of the Cu(II) complex revealed that the molecule is centrosymmetric, with two N,O-chelating mc ligands in equatorial positions and a pair of monodentate 2-nb anions in the axial positions. The lattice 2-nbH molecules help to establish the packing of monomers through hydrogen-bonding interactions. Thermal stability and reactivity of the complexes were studied by TG-DTA. Emission studies show that these complexes are fluorescent.
Resumo:
The electrochemical performance of Li-O-2 cells depends mainly on the kinetics of the cathode reaction, namely, oxygen reduction reaction in non-aqueous electrolytes. The catalyst plays an important role on the kinetics of the reaction. In the present work, dilithium phthalocyanine is used as the catalyst in the cathode of Li-O-2 cells. Dual-layer O-2 electrodes are fabricated employing a high surface area microporous carbon with Ni gauge current collector present between the two layers. Discharge capacity of Li-O-2 cell measured at 0.2 mA.cm(-2) is about 30 mAh.cm(-2). Phthalocyanine ring is considered to interact with O-2 producing Li2Pc+delta - O-2(-delta) as a reaction intermediate, which facilitates the electron-transfer reaction.
Resumo:
As Polymer Electrolyte Fuel Cells (PEFCs) are nearing the acceptable performance level for automotive and stationary applications, the focus on the research is shifting more and more toward enhancing their durability that still remains a major concern in their commercial acceptability. Hydrous ruthenium oxide (RuO2) is a promising material for pseudocapacitors due to its high stability, high specific-capacitance and rapid faradaic-reaction. Incorporation of carbon-supported RuO2 (RuO2/C) to platinum (Pt) is found to ameliorate both stability and catalytic activity of fuel cell cathodes that exhibit higher performance and durability in relation to Pt/C cathodes as evidenced by cell polarization, impedance and cyclic voltammetry data. The degradation in performance of Pt-RuO2/C cathodes is found to be only similar to 8% after 10000 accelerated stress test (AST) cycles as against similar to 60% for Pt/C cathodes after 7000 AST cycles under similar conditions. These data are in conformity with the Electrochemical Surface Area and impedance results. Interestingly, Pt-RuO2/C cathodes can withstand more than 10000 AST cycles with only a nominal loss in their performance. Studies on catalytic electrodes with X-ray diffraction, transmission electron microscopy and cross-sectional field-emission scanning electron microscopy reflect that incorporation of RuO2 to Pt helps mitigating aggregation of Pt particles and improves its stability during long-term operation of PEFCs. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.jes113440] All rights reserved.
Resumo:
We describe a hybrid synthetic protocol, the solvated metal atom dispersion (SMAD) method, for the synthesis and stabilization of monodisperse amorphous cobalt nanoparticles. By employing an optimized ratio of a weakly coordinating solvent and a capping agent monodisperse colloidal cobalt nanoparticles (2 +/- 0.5 nm) have been prepared by the SMAD method. However, the as-prepared samples were found to be oxidatively unstable which was elucidated by their magnetic studies. Oxidative stability in our case was achieved via a pyrolysis process that led to the decomposition of the organic solvent and the capping agent resulting in the formation of carbon encapsulated cobalt nanoparticles which was confirmed by Raman spectroscopy. Controlled annealing at different temperatures led to the phase transformation of metallic cobalt from the hcp to fcc phase. The magnetic behaviour varies with the phase and the particle size; especially, the coercivity of nanoparticles exhibited strong dependence on the phase transformation of cobalt. The high saturation magnetization close to that of the bulk value was achieved in the case of the annealed samples. In addition to detailed structural and morphological characterization, the results of thermal and magnetic studies are also presented.
Resumo:
In the present investigation, a Schiff base N'(1),N'(3)-bis(E)-(5-bromo-2-hydroxyphenyl)methylidene]benzene-1,3-d icarbohydrazide and its metal complexes have been synthesized and characterized. The DNA-binding studies were performed using absorption spectroscopy, emission spectra, viscosity measurements and thermal denatuaration studies. The experimental evidence indicated that, the Co(II), Ni(II) and Cu(II) complexes interact with calf thymus DNA through intercalation with an intrinsic binding constant K-b of 2.6 x 10(4) M-1, 5.7 x 10(4) M-1 and 4.5 x 10(4) M-1, respectively and they exhibited potent photo-damage abilities on pUC19 DNA, through singlet oxygen generation with quantum yields of 0.32, 0.27 and 0.30 respectively. The cytotoxic activity of the complexes resulted that they act as a potent photosensitizers for photochemical reactions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The high efficiency of fuel-cell-powered electric vehicles makes them a potentially viable option for future transportation. Polymer Electrolyte Fuel Cells (PEFCs) are most promising among various fuel cells for electric traction due to their quick start-up and low-temperature operation. In recent years, the performance of PEFCs has reached the acceptable level both for automotive and stationary applications and efforts are now being expended in increasing their durability, which remains a major concern in their commercialization. To make PEFCs meet automotive targets an understanding of the factors affecting the stability of carbon support and platinum catalyst is critical. Alloying platinum (Pt) with first-row transition metals such as cobalt (Co) is reported to facilitate both higher degree of crystallinity and enhanced activity in relation to pristine Pt. But a major challenge for the application of Pt-transition metal alloys in PEFCs is to improve the stability of these binary catalysts. Dissolution of the non-precious metal in the acidic environment could alleviate the activity of the catalysts and hence cell performance. The use of graphitic carbon as cathode-catalyst support enhances the long-term stability of Pt and its alloys in relation to non-graphitic carbon as the former exhibits higher resistance to carbon corrosion in relation to the latter in PEFC cathodes during accelerated-stress test (AST). Changes in electrochemical surface area (ESA), cell performance and charge-transfer resistance are monitored during AST through cyclic voltammetry, cell polarization and impedance measurements, respectively. Studies on catalytic electrodes with X-ray diffraction, Raman spectroscopy and transmission electron microscopy reflect that graphitic carbon-support resists carbon corrosion and helps mitigating aggregation of Pt and Pt3Co catalyst particles. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.051301jes] All rights reserved.
Resumo:
Nanostructured Pd-modified Ni/CeO2 catalyst was synthesized in a single step by solution combustion method and characterized by XRD, TEM, XPS, TPR and BET surface analyzer techniques. The catalytic performance of this compound was investigated by performing the water gas shift (WGS) and catalytic hydrogen combustion (CHC) reaction. The present compound is highly active and selective (100%) toward H-2 production for the WGS reaction. A lack of CO methanation activity is an important finding of present study and this is attributed to the ionic substitution of Pd and Ni species in CeO2. The creation of oxide vacancies due to ionic substitution of aliovalent ions induces dissociation of H2O that is responsible for the improved catalytic activity for WGS reaction. The combined H-2-TPR and XPS results show a synergism exists among Pd, Ni and ceria support. The redox reaction mechanism was used to correlate experimental data for the WGS reaction and a mechanism involving the interaction of adsorbed H-2 and O-2 through the hydroxyl species was proposed for CHC reaction. The parity plot shows a good correspondence between the experimental and predicted reaction rates. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
New metal complexes of the type M(nih)(L)](PF6)(n)center dot xAH(2)O and M(nih)(2)](PF6)center dot xH(2)O (where M = Co(III) or Ni(II), L = 1,10-phenanthroline (phen)/or 2,2' bipyridine (bpy), nih = 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone, n = 2 or 1 and x = 3 or 2) have been synthesized and characterized by elemental analysis, magnetic, IR and H-1 NMR spectral data. The electronic and magnetic moment 2.97-3.07 B.M. data infers octahedral geometry for all the complexes. The IR data reveals that Schiff base (nih) form coordination bond with the metal ion through azomethine-nitrogen, phenolic-oxygen and carbonyl-oxygen in a tridentate fashion. In addition, DNA-binding properties of these six metal complexes were investigated using absorption spectroscopy, viscosity measurements and thermal denaturation methods. The results indicated that the nickel(II) complex strongly bind with calf-thymus DNA with intrinsic DNA binding constant K-b value of 4.9 x 10(4) M-1 for (3), 4.2 x 10(4) M-1 for (4), presumably via an intercalation mechanism compared to cobalt(III) complex with K-b value of 4.6 x 10(4) M-1 (1) and 4.1 x 10(4) M-1 (2). The DNA Photoclevage experiment shows that, the complexes act as effective DNA cleavage agent. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
An electron rich porous metal-organic framework (MOF) has been synthesized, which acts as an effective heterogeneous catalyst for Diels-Alder reactions through encapsulation of the reactants in confined nano-channels of the framework.
Resumo:
Gold nanoparticles decorated reduced graphene oxide (Au-RGO) catalyst for O-2 electrode is prepared by in situ reduction of Au3+ ions and graphene oxide dispersed in water. The Au nanoparticles are uniformly distributed on the two-dimensional RGO layers. Li-O-2 cells assembled in a non-aqueous electrolyte using Au-RGO catalyst exhibit an initial discharge capacity as high as 5.89 mA h cm-(2) (5230 mA h g(-1))at a current density of 0.1 mA cm(-2). The voltage gap between the charge and discharge curves is less for Li-O-2(Au-RGO) cell in comparison with Li-O-2(RGO) cell. The Li-O-2(Au-RGO) cells are cycled over about 120 charge-discharge cycles. The results suggest that Au-RGO is a promising catalyst for rechargeable Li-O-2 cells.
Resumo:
For the purpose of water purification, novel and low-cost adsorbents which are promising replacements for activated carbon are being actively pursued. However, a single-phase material that adsorbs both cationic and anionic species remains elusive. Hence, a low-cost, multiphase adsorbent bed that purifies water containing both anionic and cationic pollutants is a desirable alternative. We choose anionic (Congo red, Orange G) and cationic (methylene blue, malachite green) dyes as model pollutants. These dyes are chosen since they are widely found in effluents from textile, leather, fishery, and pharmaceutical industries, and their carcinogenic, mutagenic, genotoxic, and cytotoxic impact on mammalian cells is well-established. We show that ZnO, (Zn0.24Cu0.76)O and cobalt ferrite based multiphase fixed adsorbent bed efficiently adsorbs model anionic (Congo red, Orange G) and cationic (methylene blue and malachite green) pollutants, and their complex mixtures. All adsorbent phases are synthesized using room-temperature, high-yield (similar to 96-100%), green chemical processes. The nanoadsorbents are characterized by using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, and zeta potential measurements. The constituent nanophases are deliberately chosen to be beyond 50 nm, in order to avoid the nanotoxic size regime of oxides. Adsorption characteristics of each of the phases are examined. Isotherm based analysis shows that adsorption is both spontaneous and highly favorable. zeta potential measurements indicate that electrostatic interactions are the primary driving force for the observed adsorption behavior. The isotherms obtained are best described using a composite Langmuir-Freundlich model. Pseudo-first-order, rapid kinetics is observed (with adsorption rate constants as high as 0.1-0.2 min(-1) in some cases). Film diffusion is shown to be the primary mechanism of adsorption.
Resumo:
The two-phase Brust-Schiffrin method (BSM) is used to synthesize highly stable nanoparticles of noble metals. A phase transfer catalyst (PTC) is used to bring in aqueous phase soluble precursors into the organic phase to enable particle synthesis there. Two different mechanisms for phase transfer are advanced in the literature. The first mechanism considers PTC to bring in an aqueous phase soluble precursor by complexing with it. The second mechanism considers the ionic species to be contained in inverse micelles of PTC, with a water core inside. A comprehensive experimental study involving measurement of interfacial tension, viscosity, water content by Karl-Fischer titration, static light scattering, H-1 NMR, and small-angle X-ray scattering is reported in this work to establish that the phase transfer catalyst tetraoctylammonium bromide transfers ions by complexing with them, instead of encapsulating them in inverse micelles. The findings have implications for particle synthesis in two-phase methods such as BSM and their modification to produce more monodispersed particles.