704 resultados para cloud computing, hypervisor, virtualizzazione, live migration, infrastructure as a service
Resumo:
Questo documento si interroga sulle nuove possibilità offerte agli operatori del mondo delle Reti di Telecomunicazioni dai paradigmi di Network Functions Virtualization, Cloud Computing e Software Defined Networking: questi sono nuovi approcci che permettono la creazione di reti dinamiche e altamente programmabili, senza disdegnare troppo il lato prestazionale. L'intento finale è valutare se con un approccio di questo genere si possano implementare dinamicamente delle concatenazioni di servizi di rete e se le prestazioni finali rispecchiano ciò che viene teorizzato dai suddetti paradigmi. Tutto ciò viene valutato per cercare una soluzione efficace al problema dell'ossificazione di Internet: infatti le applicazioni di rete, dette middle-boxes, comportano costi elevati, situazioni di dipendenza dal vendor e staticità delle reti stesse, portando all'impossibilità per i providers di sviluppare nuovi servizi. Il caso di studio si basa proprio su una rete che implementa questi nuovi paradigmi: si farà infatti riferimento a due diverse topologie, una relativa al Livello L2 del modello OSI (cioè lo strato di collegamento) e una al Livello L3 (strato di rete). Le misure effettuate infine mostrano come le potenzialità teorizzate siano decisamente interessanti e innovative, aprendo un ventaglio di infinite possibilità per il futuro sviluppo di questo settore.
Resumo:
Cloud services are becoming ever more important for everyone's life. Cloud storage? Web mails? Yes, we don't need to be working in big IT companies to be surrounded by cloud services. Another thing that's growing in importance, or at least that should be considered ever more important, is the concept of privacy. The more we rely on services of which we know close to nothing about, the more we should be worried about our privacy. In this work, I will analyze a prototype software based on a peer to peer architecture for the offering of cloud services, to see if it's possible to make it completely anonymous, meaning that not only the users using it will be anonymous, but also the Peers composing it will not know the real identity of each others. To make it possible, I will make use of anonymizing networks like Tor. I will start by studying the state of art of Cloud Computing, by looking at some real example, followed by analyzing the architecture of the prototype, trying to expose the differences between its distributed nature and the somehow centralized solutions offered by the famous vendors. After that, I will get as deep as possible into the working principle of the anonymizing networks, because they are not something that can just be 'applied' mindlessly. Some de-anonymizing techniques are very subtle so things must be studied carefully. I will then implement the required changes, and test the new anonymized prototype to see how its performances differ from those of the standard one. The prototype will be run on many machines, orchestrated by a tester script that will automatically start, stop and do all the required API calls. As to where to find all these machines, I will make use of Amazon EC2 cloud services and their on-demand instances.
Resumo:
L'elasticità è un concetto fondamentale nell'ambito del cloud computing, ma propone problemi di coordinazione che, se non compresi nella loro natura, rischiano di renderla inefficiente. Tramite il concetto di “elasticità consapevole della coordinazione” (coordination-aware elasticity), in questa tesi si discute come si possa espandere il linguaggio per l’elasticità cloud SYBL in modo che possa eseguire alcune funzioni elastiche tramite il linguaggio di coordinazione ReSpecT.
Resumo:
L’obiettivo del progetto di tesi svolto è quello di realizzare un servizio di livello middleware dedicato ai dispositivi mobili che sia in grado di fornire il supporto per l’offloading di codice verso una infrastruttura cloud. In particolare il progetto si concentra sulla migrazione di codice verso macchine virtuali dedicate al singolo utente. Il sistema operativo delle VMs è lo stesso utilizzato dal device mobile. Come i precedenti lavori sul computation offloading, il progetto di tesi deve garantire migliori performance in termini di tempo di esecuzione e utilizzo della batteria del dispositivo. In particolare l’obiettivo più ampio è quello di adattare il principio di computation offloading a un contesto di sistemi distribuiti mobili, migliorando non solo le performance del singolo device, ma l’esecuzione stessa dell’applicazione distribuita. Questo viene fatto tramite una gestione dinamica delle decisioni di offloading basata, non solo, sullo stato del device, ma anche sulla volontà e/o sullo stato degli altri utenti appartenenti allo stesso gruppo. Per esempio, un primo utente potrebbe influenzare le decisioni degli altri membri del gruppo specificando una determinata richiesta, come alta qualità delle informazioni, risposta rapida o basata su altre informazioni di alto livello. Il sistema fornisce ai programmatori un semplice strumento di definizione per poter creare nuove policy personalizzate e, quindi, specificare nuove regole di offloading. Per rendere il progetto accessibile ad un più ampio numero di sviluppatori gli strumenti forniti sono semplici e non richiedono specifiche conoscenze sulla tecnologia. Il sistema è stato poi testato per verificare le sue performance in termini di mecchanismi di offloading semplici. Successivamente, esso è stato anche sottoposto a dei test per verificare che la selezione di differenti policy, definite dal programmatore, portasse realmente a una ottimizzazione del parametro designato.
Resumo:
The 5th generation of mobile networking introduces the concept of “Network slicing”, the network will be “sliced” horizontally, each slice will be compliant with different requirements in terms of network parameters such as bandwidth, latency. This technology is built on logical instead of physical resources, relies on virtual network as main concept to retrieve a logical resource. The Network Function Virtualisation provides the concept of logical resources for a virtual network function, enabling the concept virtual network; it relies on the Software Defined Networking as main technology to realize the virtual network as resource, it also define the concept of virtual network infrastructure with all components needed to enable the network slicing requirements. SDN itself uses cloud computing technology to realize the virtual network infrastructure, NFV uses also the virtual computing resources to enable the deployment of virtual network function instead of having custom hardware and software for each network function. The key of network slicing is the differentiation of slice in terms of Quality of Services parameters, which relies on the possibility to enable QoS management in cloud computing environment. The QoS in cloud computing denotes level of performances, reliability and availability offered. QoS is fundamental for cloud users, who expect providers to deliver the advertised quality characteristics, and for cloud providers, who need to find the right tradeoff between QoS levels that has possible to offer and operational costs. While QoS properties has received constant attention before the advent of cloud computing, performance heterogeneity and resource isolation mechanisms of cloud platforms have significantly complicated QoS analysis and deploying, prediction, and assurance. This is prompting several researchers to investigate automated QoS management methods that can leverage the high programmability of hardware and software resources in the cloud.
Resumo:
The past decade has seen the energy consumption in servers and Internet Data Centers (IDCs) skyrocket. A recent survey estimated that the worldwide spending on servers and cooling have risen to above $30 billion and is likely to exceed spending on the new server hardware . The rapid rise in energy consumption has posted a serious threat to both energy resources and the environment, which makes green computing not only worthwhile but also necessary. This dissertation intends to tackle the challenges of both reducing the energy consumption of server systems and by reducing the cost for Online Service Providers (OSPs). Two distinct subsystems account for most of IDC’s power: the server system, which accounts for 56% of the total power consumption of an IDC, and the cooling and humidifcation systems, which accounts for about 30% of the total power consumption. The server system dominates the energy consumption of an IDC, and its power draw can vary drastically with data center utilization. In this dissertation, we propose three models to achieve energy effciency in web server clusters: an energy proportional model, an optimal server allocation and frequency adjustment strategy, and a constrained Markov model. The proposed models have combined Dynamic Voltage/Frequency Scaling (DV/FS) and Vary-On, Vary-off (VOVF) mechanisms that work together for more energy savings. Meanwhile, corresponding strategies are proposed to deal with the transition overheads. We further extend server energy management to the IDC’s costs management, helping the OSPs to conserve, manage their own electricity cost, and lower the carbon emissions. We have developed an optimal energy-aware load dispatching strategy that periodically maps more requests to the locations with lower electricity prices. A carbon emission limit is placed, and the volatility of the carbon offset market is also considered. Two energy effcient strategies are applied to the server system and the cooling system respectively. With the rapid development of cloud services, we also carry out research to reduce the server energy in cloud computing environments. In this work, we propose a new live virtual machine (VM) placement scheme that can effectively map VMs to Physical Machines (PMs) with substantial energy savings in a heterogeneous server cluster. A VM/PM mapping probability matrix is constructed, in which each VM request is assigned with a probability running on PMs. The VM/PM mapping probability matrix takes into account resource limitations, VM operation overheads, server reliability as well as energy effciency. The evolution of Internet Data Centers and the increasing demands of web services raise great challenges to improve the energy effciency of IDCs. We also express several potential areas for future research in each chapter.
Resumo:
Under the brand name “sciebo – the Campuscloud” (derived from “science box”) a consortium of more than 20 research and applied science universities started a large scale cloud service for about 500,000 students and researchers in North Rhine-Westphalia, Germany’s most populous state. Starting with the much anticipated data privacy compliant sync & share functionality, sciebo offers the potential to become a more general cloud platform for collaboration and research data management which will be actively pursued in upcoming scientific and infrastructural projects. This project report describes the formation of the venture, its targets and the technical and the legal solution as well as the current status and the next steps.
Resumo:
Current advanced cloud infrastructure management solutions allow scheduling actions for dynamically changing the number of running virtual machines (VMs). This approach, however, does not guarantee that the scheduled number of VMs will properly handle the actual user generated workload, especially if the user utilization patterns will change. We propose using a dynamically generated scaling model for the VMs containing the services of the distributed applications, which is able to react to the variations in the number of application users. We answer the following question: How to dynamically decide how many services of each type are needed in order to handle a larger workload within the same time constraints? We describe a mechanism for dynamically composing the SLAs for controlling the scaling of distributed services by combining data analysis mechanisms with application benchmarking using multiple VM configurations. Based on processing of multiple application benchmarks generated data sets we discover a set of service monitoring metrics able to predict critical Service Level Agreement (SLA) parameters. By combining this set of predictor metrics with a heuristic for selecting the appropriate scaling-out paths for the services of distributed applications, we show how SLA scaling rules can be inferred and then used for controlling the runtime scale-in and scale-out of distributed services. We validate our architecture and models by performing scaling experiments with a distributed application representative for the enterprise class of information systems. We show how dynamically generated SLAs can be successfully used for controlling the management of distributed services scaling.
Resumo:
Modern cloud-based applications and infrastructures may include resources and services (components) from multiple cloud providers, are heterogeneous by nature and require adjustment, composition and integration. The specific application requirements can be met with difficulty by the current static predefined cloud integration architectures and models. In this paper, we propose the Intercloud Operations and Management Framework (ICOMF) as part of the more general Intercloud Architecture Framework (ICAF) that provides a basis for building and operating a dynamically manageable multi-provider cloud ecosystem. The proposed ICOMF enables dynamic resource composition and decomposition, with a main focus on translating business models and objectives to cloud services ensembles. Our model is user-centric and focuses on the specific application execution requirements, by leveraging incubating virtualization techniques. From a cloud provider perspective, the ecosystem provides more insight into how to best customize the offerings of virtualized resources.
Resumo:
Cost-efficient operation while satisfying performance and availability guarantees in Service Level Agreements (SLAs) is a challenge for Cloud Computing, as these are potentially conflicting objectives. We present a framework for SLA management based on multi-objective optimization. The framework features a forecasting model for determining the best virtual machine-to-host allocation given the need to minimize SLA violations, energy consumption and resource wasting. A comprehensive SLA management solution is proposed that uses event processing for monitoring and enables dynamic provisioning of virtual machines onto the physical infrastructure. We validated our implementation against serveral standard heuristics and were able to show that our approach is significantly better.
Resumo:
Virtualisation of cellular networks can be seen as a way to significantly reduce the complexity of processes, required nowadays to provide reliable cellular networks. The Future Communication Architecture for Mobile Cloud Services: Mobile Cloud Networking (MCN) is a EU FP7 Large-scale Integrating Project (IP) funded by the European Commission that is focusing on cloud computing concepts to achieve virtualisation of cellular networks. It aims at the development of a fully cloud-based mobile communication and application platform, or more specifically, it aims to investigate, implement and evaluate the technological foundations for the mobile communication system of Long Term Evolution (LTE), based on Mobile Network plus Decentralized Computing plus Smart Storage offered as one atomic service: On-Demand, Elastic and Pay-As-You-Go. This paper provides a brief overview of the MCN project and discusses the challenges that need to be solved.
Resumo:
Cloud Computing is an enabler for delivering large-scale, distributed enterprise applications with strict requirements in terms of performance. It is often the case that such applications have complex scaling and Service Level Agreement (SLA) management requirements. In this paper we present a simulation approach for validating and comparing SLA-aware scaling policies using the CloudSim simulator, using data from an actual Distributed Enterprise Information System (dEIS). We extend CloudSim with concurrent and multi-tenant task simulation capabilities. We then show how different scaling policies can be used for simulating multiple dEIS applications. We present multiple experiments depicting the impact of VM scaling on both datacenter energy consumption and dEIS performance indicators.
Resumo:
Content Distribution Networks are mandatory components of modern web architectures, with plenty of vendors offering their services. Despite its maturity, new paradigms and architecture models are still being developed in this area. Cloud Computing, on the other hand, is a more recent concept which has expanded extremely quickly, with new services being regularly added to cloud management software suites such as OpenStack. The main contribution of this paper is the architecture and the development of an open source CDN that can be provisioned in an on-demand, pay-as-you-go model thereby enabling the CDN as a Service paradigm. We describe our experience with integration of CDNaaS framework in a cloud environment, as a service for enterprise users. We emphasize the flexibility and elasticity of such a model, with each CDN instance being delivered on-demand and associated to personalized caching policies as well as an optimized choice of Points of Presence based on exact requirements of an enterprise customer. Our development is based on the framework developed in the Mobile Cloud Networking EU FP7 project, which offers its enterprise users a common framework to instantiate and control services. CDNaaS is one of the core support components in this project as is tasked to deliver different type of multimedia content to several thousands of users geographically distributed. It integrates seamlessly in the MCN service life-cycle and as such enjoys all benefits of a common design environment, allowing for an improved interoperability with the rest of the services within the MCN ecosystem.