914 resultados para clinical application
Resumo:
Ischemia-reperfusion (I/R) injury is a common clinical event with the potential to seriously affect, and sometimes kill, the patient. Interruption of blood supply causes ischemia, which rapidly damages metabolically active tissues. Paradoxically, restoration of blood flow to the ischemic tissues initiates a cascade of pathology that leads to additional cell or tissue injury. I/R is a potent inducer of complement activation that results in the production of a number of inflammatory mediators. The use of specific inhibitors to block complement activation has been shown to prevent local tissue injury after I/R. Clinical and experimental studies in gut, kidney, limb, and liver have shown that I/R results in local activation of the complement system and leads to the production of the complement factors C3a, C5a, and the membrane attack complex. The novel inhibitors of complement products may find wide clinical application because there are no effective drug therapies currently available to treat I/R injuries.
Resumo:
Background and Purpose. A new method of dynamometry has been developed to measure the performance of the craniocervical (CC) flexor muscles by recording the torque that these muscles exert on the cranium around the CC junction. This report describes the method, the specifications of the instrument, and the preliminary reliability data. Subjects and Methods. For the reliability study, 20 subjects (12 subjects with a history of neck pain, 8 subjects without a history of neck pain) performed, on 2 occasions, maximal voluntary isometric contraction (MVIC) tests of CC flexion in 3 positions within the range of CC flexion and submaximal sustained tests (20% and 50% of MVIC) in the middle range of CC flexion (craniocervical neutral position). Reliability coefficients were calculated to establish the test-retest reliability of the measurements. Results. The method demonstrated good reliability over 2 sessions in the measurement of MVIC (intraclass correlation coefficient [ICC] =.79-.93, SEM=0.6-1.4 N-m) and in the measurement of steadiness (standard deviation of torque amplitude) of a sustained contraction at 20% of NMC (ICC=.74-.80, SEM=0.01 N-m), but not at 50% of MVIC (ICC=.07-.76, SEM=0.04-0.13 N-m). Discussion and Conclusion. The new dynamometry method appears to have potential clinical application in the measurement of craniocervical flexor muscle performance.
Resumo:
Complement factor 5a (C5a) is formed upon complement system activation in response to infection, injury or disease. Whilst C5a is a potent mediator of immune and inflammatory processes, excessive production or inadequate regulation of C5a has been implicated in the pathogenesis of numerous immuno-inflammatory diseases, predominantly through experimental studies utilising animal models of disease. Both acute and chronic conditions may benefit from C5a inhibition, including rheumatoid arthritis, inflammatory bowel disease, asthma, psoriasis, haemorrhagic shock and neurodegenerative conditions. The potentially broad clinical application for treatments that inhibit the activity of C5a at C5a receptors and the large global market for anti-inflammatory therapeutics have made C5a and the C5a receptor attractive targets for academic and commercial drug development programmes. in the past 5 years, interest in C5a as a drug target has grown substantially, and this activity has resulted in a collection of patents and scientific papers reporting novel C5a and C5a receptor inhibitors and antagonists, and generated a secondary stream of patent applications broadly claiming the use of C5/C5a inhibitors as a method of treating various immune and inflammatory conditions. This paper will review the physiology and pathophysiology of C5a and discuss the development of C5a and C5a receptor inhibitors in light of the recent scientific and patent literature.
Resumo:
The manipulation of dendritic cells (DCs) ex vivo to present tumor-associated antigens for the activation and expansion of tumor-specific cytotoxic T lymphocytes (CTLs) attempts to exploit these cells’ pivotal role in immunity. However, significant improvements are needed if this approach is to have wider clinical application. We optimized a gene delivery protocol via electroporation for cord blood (CB) CD34+ DCs using in vitro–transcribed (IVT) mRNA. We achieved > 90% transfection of DCs with IVT-enhanced green fluorescent protein mRNA with > 90% viability. Electroporation of IVT-mRNA up-regulated DC costimulatory molecules. DC processing and presentation of mRNA-encoded proteins, as major histocompatibility complex/peptide complexes, was established by CTL assays using transfected DCs as targets. Along with this, we also generated specific antileukemic CTLs using DCs electroporated with total RNA from the Nalm-6 leukemic cell line and an acute lymphocytic leukemia xenograft. This significant improvement in DC transfection represents an important step forward in the development of immunotherapy protocols for the treatment of malignancy.
Resumo:
Adipose tissue forms when basement membrane extract ( Matrigel (TM)) and fibroblast growth factor-2 (FGF-2) are added to our mouse tissue engineering chamber model. A mouse tumor extract, Matrigel is unsuitable for human clinical application, and finding an alternative to Matrigel is essential. In this study we generated adipose tissue in the chamber model without using Matrigel by controlled release of FGF-2 in a type I collagen matrix. FGF-2 was impregnated into biodegradable gelatin microspheres for its slow release. The chambers were filled with these microspheres suspended in 60 mu L collagen gel. Injection of collagen containing free FGF-2 or collagen containing gelatin microspheres with buffer alone served as controls. When chambers were harvested 6 weeks after implantation, the volume and weight of the tissue obtained were higher in the group that received collagen and FGF-2 impregnated microspheres than in controls. Histologic analysis of tissue constructs showed the formation of de novo adipose tissue accompanied by angiogenesis. In contrast, control groups did not show extensive adipose tissue formation. In conclusion, this study has shown that de novo formation of adipose tissue can be achieved through controlled release of FGF-2 in collagen type I in the absence of Matrigel.
Resumo:
Administration of human recombinant erythropoietin ( EPO) at time of acute ischemic renal injury ( IRI) inhibits apoptosis, enhances tubular epithelial regeneration, and promotes renal functional recovery. The present study aimed to determine whether darbepoetin-alfa ( DPO) exhibits comparable renoprotection to that afforded by EPO, whether pro or antiapoptotic Bcl-2 proteins are involved, and whether delayed administration of EPO or DPO 6 h following IRI ameliorates renal dysfunction. The model of IRI involved bilateral renal artery occlusion for 45 min in rats ( N = 4 per group), followed by reperfusion for 1-7 days. Controls were sham-operated. Rats were treated at time of ischemia or sham operation ( T0), or post-treated ( 6 h after the onset of reperfusion, T6) with EPO ( 5000 IU/kg), DPO ( 25 mu g/kg), or appropriate vehicle by intraperitoneal injection. Renal function, structure, and immunohistochemistry for Bcl-2, Bcl-XL, and Bax were analyzed. DPO or EPO at T0 significantly abrogated renal dysfunction in IRI animals ( serum creatinine for IRI 0.17 +/- 0.05mmol/l vs DPO-IRI 0.08 +/- 0.03mmol/l vs EPO-IRI 0.04 +/- 0.01mmol/l, P = 0.01). Delayed administration of DPO or EPO ( T6) also significantly abrogated subsequent renal dysfunction ( serum creatinine for IRI 0.17 +/- 0.05mmol/l vs DPO-IRI 0.06 +/- 0.01mmol/l vs EPO-IRI 0.03 +/- 0.03mmol/l, P = 0.01). There was also significantly decreased tissue injury ( apoptosis, P < 0.05), decreased proapoptotic Bax, and increased regenerative capacity, especially in the outer stripe of the outer medulla, with DPO or EPO at T0 or T6. These results reaffirm the potential clinical application of DPO and EPO as novel renoprotective agents for patients at risk of ischemic acute renal failure or after having sustained an ischemic renal insult.
Resumo:
Diabetic nephropathy is characterized by excessive extracellular matrix accumulation resulting in renal scarring and end-stage renal disease. Previous studies have suggested that transglutaminase type 2, by formation of its protein crosslink product epsilon-(gamma-glutamyl)lysine, alters extracellular matrix homeostasis, causing basement membrane thickening and expansion of the mesangium and interstitium. To determine whether transglutaminase inhibition can slow the progression of chronic experimental diabetic nephropathy over an extended treatment period, the inhibitor NTU281 was given to uninephrectomized streptozotocin-induced diabetic rats for up to 8 months. Effective transglutaminase inhibition significantly reversed the increased serum creatinine and albuminuria in the diabetic rats. These improvements were accompanied by a fivefold decrease in glomerulosclerosis and a sixfold reduction in tubulointerstitial scarring. This was associated with reductions in collagen IV accumulation by 4 months, along with reductions in collagens I and III by 8 months. This inhibition also decreased the number of myofibroblasts, suggesting that tissue transglutaminase may play a role in myofibroblast transformation. Our study suggests that transglutaminase inhibition ameliorates the progression of experimental diabetic nephropathy and can be considered for clinical application.
Resumo:
Chronic systemic immunosuppression in cell replacement therapy restricts its clinical application. This study sought to explore the potential of cell-based immune modulation as an alternative to immunosuppressive drug therapy in the context of pancreatic islet transplantation. Human amniotic epithelial cells (AEC) possess innate anti-inflammatory and immunosuppressive properties that were utilized to create localized immune privilege in an in vitro islet cell culture system. Cellular constructs composed of human islets and AEC (islet/AEC) were bioengineered under defined rotational cell culture conditions. Insulin secretory capacity was validated by glucose challenge and immunomodulatory potential characterized using a peripheral blood lymphocyte (PBL) proliferation assay. Results were compared to control constructs composed of islets or AEC cultured alone. Studies employing AEC-conditioned medium examined the role of soluble factors, and fluorescence immunocytochemistry was used to identify putative mediators of the immunosuppressive response in isolated AEC monocultures. Sustained, physiologically appropriate insulin secretion was observed in both islets and islet/AEC constructs. Activation of resting PBL proliferation occurred on exposure to human islets alone but this response was significantly (p <0.05) attenuated by the presence of AEC and AEC-conditioned medium. Mitogen (phytohaemagglutinin, 5 µg/ml)-induced PBL proliferation was sustained on contact with isolated islets but abrogated by AEC, conditioned medium, and the islet/AEC constructs. Immunocytochemical analysis of AEC monocultures identified a subpopulation of cells that expressed the proapoptosis protein Fas ligand. This study demonstrates that human islet/AEC constructs exhibit localized immunosuppressive properties with no impairment of ß-cell function. The data suggest that transplanted islets may benefit from the immune privilege status conferred on them as a consequence of their close proximity to human AEC. Such an approach may reduce the need for chronic systemic immunosuppression, thus making islet transplantation a more attractive treatment option for the management of insulin-dependent diabetes.
Resumo:
The 19 channel Neuromagnetometer system in the Clinical Neurophysiology Unit at Aston University is a multi-channel system, unique in the United Kingdom. A bite bar head localisation and MRI co-registration strategy which enabled accurate and reproducible localisation of MEG data into cortical space was developed. This afforded the opportunity to study magnetic fields of the human cortex generated by stimulation of peripheral nerve, by stimulation of visceral sensory receptors and by those evoked through voluntary finger movement. Initially, a study of sensory-motor evoked data was performed in a healthy control population. The techniques developed were then applied to patients who were to undergo neurosurgical intervention for the treatment of epilepsy and I or space occupying lesions. This enabled both validation of the effective accuracy of source localisation using MEG as well as to determine the clinical value of MEG in presurgical assessment of functional localisation in human cortex. The studies in this thesis have demonstrated that MEG can repeatedly and reliably locate sources contained within a single gyrus and thus potentially differentiate between disparate gyral activation. This ability is critical in the clinical application of any functional imaging technique; which is yet to be fully validated by any other 'non-invasive' functional imaging methodology. The technique was also applied to the study of visceral sensory representation in the cortex which yielded important data about the multiple cortical representation of visceral sensory function.
Resumo:
The development and characterization of an enhanced composite skin substitute based on collagen and poly(e-caprolactone) are reported. Considering the features of excellent biocompatibility, easy-manipulated property and exempt from cross-linking related toxicity observed in the 1:20 biocomposites, skin substitutes were developed by seeding human single-donor keratinocytes and fibroblasts alone on both sides of the 1:20 biocomposite to allow for separation of two cell types and preserving cell signals transmission via micro-pores with a porosity of 28.8 ± 16.1 µm. The bi-layered skin substitute exhibited both differentiated epidermis and fibrous dermis in vitro. Less Keratinocyte Growth Factor production was measured in the co-cultured skin model compared to fibroblast alone condition indicating a favorable microenvironment for epidermal homeostasis. Moreover, fast wound closure, epidermal differentiation, and abundant dermal collagen deposition were observed in composite skin in vivo. In summary, the beneficial characteristics of the new skin substitutes exploited the potential for pharmaceutical screening and clinical application.
Resumo:
α-Lipoic acid, dihydrolipoic acid (DHLA), N-acetyl cysteine and ascorbate were compared with methylene blue for their ability to attenuate and/or reduce methaemoglobin formation induced by sodium nitrite, 4-aminophenol and dapsone hydroxylamine in human erythrocytes. Neither α-lipoic acid, DHLA, N-acetyl cysteine nor ascorbate had any significant effects on methaemoglobin formed by nitrite, either from pre-treatment, simultaneous addition or post 30 min addition of the agents up to the 60 min time point, although N-acetyl cysteine did reduce methaemoglobin formation at 120 min (P<0.05). In all three treatment groups at 30, 60 and 120 min, there were no significant effects mediated by DHLA or N-acetyl cysteine on 4-aminophenol (1 mM)-mediated haemoglobin oxidation. Ascorbate caused marked significant reductions in 4-aminophenol methaemoglobin in all treatment groups at 30-120 min except at 30 min in the simultaneous addition group (P<0.0001). Neither α-lipoic acid, nor N-acetyl cysteine showed any effects on hydroxylamine-mediated methaemoglobin formation at 30 and 60 in all treatment groups. In contrast, DHLA significantly reduced hydroxylamine-mediated methaemoglobin formation at all three time points after pre-incubation and simultaneous addition (P<0.001), while ascorbate was ineffective. Compared with methylene blue, which was effective in reducing methaemoglobin formation by all three toxins (P<0.01), ascorbate was only highly effective against 4-aminophenol mediated methaemoglobin, whilst the DHLA-mediated attenuation of dapsone hydroxylamine-mediated methaemoglobin formation indicates a possible clinical application in high-dose dapsone therapy. © 2003 Elsevier B.V. All rights reserved.
Resumo:
The miniaturization, sophistication, proliferation, and accessibility of technologies are enabling the capture of more and previously inaccessible phenomena in Parkinson's disease (PD). However, more information has not translated into a greater understanding of disease complexity to satisfy diagnostic and therapeutic needs. Challenges include noncompatible technology platforms, the need for wide-scale and long-term deployment of sensor technology (among vulnerable elderly patients in particular), and the gap between the "big data" acquired with sensitive measurement technologies and their limited clinical application. Major opportunities could be realized if new technologies are developed as part of open-source and/or open-hardware platforms that enable multichannel data capture sensitive to the broad range of motor and nonmotor problems that characterize PD and are adaptable into self-adjusting, individualized treatment delivery systems. The International Parkinson and Movement Disorders Society Task Force on Technology is entrusted to convene engineers, clinicians, researchers, and patients to promote the development of integrated measurement and closed-loop therapeutic systems with high patient adherence that also serve to (1) encourage the adoption of clinico-pathophysiologic phenotyping and early detection of critical disease milestones, (2) enhance the tailoring of symptomatic therapy, (3) improve subgroup targeting of patients for future testing of disease-modifying treatments, and (4) identify objective biomarkers to improve the longitudinal tracking of impairments in clinical care and research. This article summarizes the work carried out by the task force toward identifying challenges and opportunities in the development of technologies with potential for improving the clinical management and the quality of life of individuals with PD. © 2016 International Parkinson and Movement Disorder Society.
Resumo:
Nanoparticles offer an ideal platform for the delivery of small molecule drugs, subunit vaccines and genetic constructs. Besides the necessity of a homogenous size distribution, defined loading efficiencies and reasonable production and development costs, one of the major bottlenecks in translating nanoparticles into clinical application is the need for rapid, robust and reproducible development techniques. Within this thesis, microfluidic methods were investigated for the manufacturing, drug or protein loading and purification of pharmaceutically relevant nanoparticles. Initially, methods to prepare small liposomes were evaluated and compared to a microfluidics-directed nanoprecipitation method. To support the implementation of statistical process control, design of experiment models aided the process robustness and validation for the methods investigated and gave an initial overview of the size ranges obtainable in each method whilst evaluating advantages and disadvantages of each method. The lab-on-a-chip system resulted in a high-throughput vesicle manufacturing, enabling a rapid process and a high degree of process control. To further investigate this method, cationic low transition temperature lipids, cationic bola-amphiphiles with delocalized charge centers, neutral lipids and polymers were used in the microfluidics-directed nanoprecipitation method to formulate vesicles. Whereas the total flow rate (TFR) and the ratio of solvent to aqueous stream (flow rate ratio, FRR) was shown to be influential for controlling the vesicle size in high transition temperature lipids, the factor FRR was found the most influential factor controlling the size of vesicles consisting of low transition temperature lipids and polymer-based nanoparticles. The biological activity of the resulting constructs was confirmed by an invitro transfection of pDNA constructs using cationic nanoprecipitated vesicles. Design of experiments and multivariate data analysis revealed the mathematical relationship and significance of the factors TFR and FRR in the microfluidics process to the liposome size, polydispersity and transfection efficiency. Multivariate tools were used to cluster and predict specific in-vivo immune responses dependent on key liposome adjuvant characteristics upon delivery a tuberculosis antigen in a vaccine candidate. The addition of a low solubility model drug (propofol) in the nanoprecipitation method resulted in a significantly higher solubilisation of the drug within the liposomal bilayer, compared to the control method. The microfluidics method underwent scale-up work by increasing the channel diameter and parallelisation of the mixers in a planar way, resulting in an overall 40-fold increase in throughput. Furthermore, microfluidic tools were developed based on a microfluidics-directed tangential flow filtration, which allowed for a continuous manufacturing, purification and concentration of liposomal drug products.
Resumo:
Disulfiram (DS), an anti-alcoholism drug, shows very strong cytotoxicity in many cancer types. However its clinical application in cancer treatment is limited by the very short half-life in the bloodstream. In this study, we developed a poly lactic-co-glycolic acid (PLGA)-encapsulated DS protecting DS from the degradation in the bloodstream. The newly developed DS-PLGA was characterized. The DS-PLGA has very satisfactory encapsulation efficiency, drug-loading content and controlled release rate in vitro. PLGA encapsulation extended the half-life of DS from shorter than 2 minutes to 7 hours in serum. In combination with copper, DS-PLGA significantly inhibited the liver cancer stem cell population. CI-isobologram showed a remarkable synergistic cytotoxicity between DS-PLGA and 5-FU or Sorafenib. It also demonstrated very promising anticancer efficacy and antimetastatic effect in liver cancer mouse model. Both DS and PLGA are FDA approved products for clinical application. Our study may lead to repositioning of DS into liver cancer treatment.
Resumo:
Gemcitabine (2', 2'-difluoro-2'-deoxycytidine or dFdC) has become a standard chemotherapeutic agent in the treatment of several cellular and solid tumor- related malignancies. Gemcitabine's anti-cancer activity has been attributed to its inhibitory effects on the cell's DNA synthetic machinery resulting in the induction of cell arrest and apoptosis. Despite its broad application, treatment capacity with this drug is limited due to complicated administration schedules stemming from low bioavailability and tumor resistance associated with its rampant intracellular enzymatic inactivation. The aim of this study is to characterize the anti-cancer activity of novel designed and synthesized gemcitabine analogues, that were modified with long alkyl chains at the 4-amino group of the cytosine ring. This study proposes the use of these alternative derivatives of gemcitabine that not only uphold current drug standards for potency, but additionally confer chemical stability against enzymatic inactivation. During screening conducted to identifY prospective gem-analogue candidates, I observed the potent anticancer properties ofthree 4-N modified compounds on MCF-7 breast adenocarcinoma cells. Experiments described here with these compounds referred to as LCO, LCAO, and Gvaldo, evaluate their cytotoxicity on MCF-7 cells at the concentrations of 25flM and 2.5flM, and assess their inhibitory effects on DNA synthesis and cell cycle progression using sulphorhodamine B and bromodeoxyuridine assays as well as flow cytometric analyses, respectively. Among the compounds tested, LCO was shown to be most active inhibitor of DNA synthesis (a=.05; p<.OOl) as reflected as a distinct GO/Gl versus S-phase arrest in the 25flM and 2.5flM treatments, respectively. Together, these experiments provide preliminary evidence for the clinical application of LCO-like gemcitabine derivatives as a novel treatment for breast cancer.