976 resultados para cis splicing
Resumo:
New tetraruthenated manganese (III) porphyrins were synthesized and characterized (P-31 NMR, cyclic voltammetry, UV-Vis). This new system presents four units of cationic ``[RuCl(dppb)(X-bipy)](+)``. The electrochemical and catalytic properties of the central manganese (III) show dependence on the characteristics of the peripheral ruthenium complexes as evidenced by the Mn-(III)/Mn-(II) reduction potential. The catalytic oxidation reactions of olefins, cyclohexene and cyclohexane, were carried out in the presence of tetrapyridyl manganese (III) porphyrins containing cationic ruthenium complex and using iodosylbenzene as oxygen donor. The performance of these new tetraruthenated porphyrins systems were evaluated and compared with the manganese porphyrin. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Chlorocatechol 1,2-dioxygenase (1,2-CCD) is a non-heme iron protein involved in the intradiol cleavage of aromatic compounds that are recalcitrant to biodegradation. In particular, 1,2-CCD catalyzes the conversion of catechol and its halogenated derivatives to cis-cis muconic acid. In this study we describe a series of experiments concerning the interaction of chlorocatechol 1,2-dioxygenase from Pseudomonas putida (Pp1,2-CCD) with cis-cis muconic acid. We used single-injection ITC to show that the reaction product inhibits enzyme kinetics. DSC and EPR measurements probed whether this was accomplished by a direct binding of the product to the enzyme active site. DSC shows that cis-cis muconic acid affects the thermal unfolding of the protein and allowed us to estimate a binding constant. Furthermore, EPR spectra of the Fe(III) center demonstrate that, upon product binding, a significant decrease in resonance intensity is observed, indicating that cis-cis muconic acid binds directly to the active site. Based on the increasing interest for understanding dioxygenases mechanism of action and, moreover, how to control such process, our data indicate that the product of the reaction does play a relevant role in the catalysis and should therefore be taken into account when one thinks about ways of regulating enzyme activity. (C) 2010 Elsevier B.V. All rights reserved.
Cwc24p, a novel Saccharomyces cerevisiae nuclear ring finger protein, affects pre-snoRNA U3 splicing
Resumo:
U3 snoRNA is transcribed from two intron-containing genes in yeast, snR17A and snR17B. Although the assembly of the U3 snoRNP has not been precisely determined, at least some of the core box C/D proteins are known to bind pre-U3 co-transcriptionally, thereby affecting splicing and 3 `-end processing of this snoRNA. We identified the interaction between the box C/D assembly factor Nop17p and Cwc24p, a novel yeast RING finger protein that had been previously isolated in a complex with the splicing factor Cef1p. Here we show that, consistent with the protein interaction data, Cwc24p localizes to the cell nucleus, and its depletion leads to the accumulation of both U3 pre-snoRNAs. U3 snoRNA is involved in the early cleavages of 35 S pre-rRNA, and the defective splicing of pre-U3 detected in cells depleted of Cwc24p causes the accumulation of the 35 S precursor rRNA. These results led us to the conclusion that Cwc 24p is involved in pre-U3 snoRNA splicing, indirectly affecting pre-rRNA processing.
Resumo:
Schistosoma mansoni is a well-adapted blood-dwelling parasitic helminth, persisting for decades in its human host despite being continually exposed to potential immune attack. Here, we describe in detail micro-exon genes (MEG) in S. mansoni, some present in multiple copies, which represent a novel molecular system for creating protein variation through the alternate splicing of short (<= 36 bp) symmetric exons organized in tandem. Analysis of three closely related copies of one MEG family allowed us to trace several evolutionary events and propose a mechanism for micro-exon generation and diversification. Microarray experiments show that the majority of MEGs are up-regulated in life cycle stages associated with establishment in the mammalian host after skin penetration. Sequencing of RT-PCR products allowed the description of several alternate splice forms of micro-exon genes, highlighting the potential use of these transcripts to generate a complex pool of protein variants. We obtained direct evidence for the existence of such pools by proteomic analysis of secretions from migrating schistosomula and mature eggs. Whole-mount in situ hybridization and immunolocalization showed that MEG transcripts and proteins were restricted to glands or epithelia exposed to the external environment. The ability of schistosomes to produce a complex pool of variant proteins aligns them with the other major groups of blood parasites, but using a completely different mechanism. We believe that our data open a new chapter in the study of immune evasion by schistosomes, and their ability to generate variant proteins could represent a significant obstacle to vaccine development.
Resumo:
Aims: In the present work we investigated the in vitro effect of cis-4-decenoic acid, the pathognomonic metabolite of medium-chain acyl-CoA dehydrogenase deficiency, on various parameters of bioenergetic homeostasis in rat brain mitochondria. Main methods: Respiratory parameters determined by oxygen consumption were evaluated, as well as membrane potential, NAD(P)H content, swelling and cytochrome c release in mitochondrial preparations from rat brain, using glutamate plus malate or succinate as substrates. The activities of citric acid cycle enzymes were also assessed. Key findings: cis-4-decenoic acid markedly increased state 4 respiration, whereas state 3 respiration and the respiratory control ratio were decreased. The ADP/O ratio, the mitochondrial membrane potential, the matrix NAD(P)H levels and aconitase activity were also diminished by cis-4-decenoic acid. These data indicate that this fatty acid acts as an uncoupler of oxidative phosphorylation and as a metabolic inhibitor. cis-4-decenoic acid also provoked a marked mitochondrial swelling when either KCl or sucrose was used in the incubation medium and also induced cytochrome c release from mitochondria, suggesting a non-selective permeabilization of the inner mitochondria! membrane. Significance: It is therefore presumed that impairment of mitochondrial homeostasis provoked by cis-4-decenoic acid may be involved in the brain dysfunction observed in medium-chain acyl-CoA dehydrogenase deficient patients. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The solvatochromic shift of the lowest singlet it pi -> pi* electronic transition in the all-trans, cis-13, cis-11, cis-9, and cis-7 retinal isomers were computed under the influence of water, methanol, and benzene solvents. Excitation energies were calculated in gas phase and in solution. The calculations in solution were performed considering the sequential Monte Carlo (MC) /Quantum Mechanical approach. The MC simulations were performed considering the full retinal isomer molecules and 900 water molecules, 900 methanol, or 400 benzene ones. The OPLS/AA parametrization was chosen for retinal, methanol, and benzene molecules and the SPC model was used for water one. From the MC calculations 100 independent configurations were selected, with 100 solvent molecules in thermodynamical equilibrium at T = 298.15 K. Average point-charges were obtained from those independent configurations for water, methanol, and benzene solvent. TDDFT and CASSCF//CASPT2 methodologies were used to compute the vertical excitation energy of the retinal isomers in different environment. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110: 2076-2087, 2010
Resumo:
CoFe(2)O(4) nanoparticles were obtained by the co-precipitation method. They were further modified by the adsorption of ricinoleic acid (RA). The non-modified and modified CoFe(2)O(4)/RA nanoparticles were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), Raman, and Fourier transform infrared (FTIR) spectroscopy. The modified particles present a mean diameter < 20 nm. The adsorption of RA on the CoFe(2)O(4) surface is characterized by the IR absorptions of the RA while in the Raman spectrum the predominant signals are those from the CoFe(2)O(4). The cis-polyisoprene (PI) composite was prepared by dissolving PI in cyclohexane followed by the addition of a magnetic fluid based on CoFe(2)O(4)/RA nanoparticles dispersed in cyclohexane. After solvent evaporation a magnetic composite was obtained and characterized by AFM, Raman, and FTIR measurements. AFM images show uniformly CoFe(2)O(4)/RA particles distributed in the PI matrix. Raman spectra obtained for the composites reveal the characteristic Raman peaks of PI and CoFe(2)O(4) nanoparticles.
Resumo:
Photochemical and photophysical properties of fac-[Re(CO)(3)(Clphen)(trans-L)](+) complexes, Clphen = 5-chloro-1,10-phenathroline and L = 1,2-bis(4-pyridyl)ethylene, bpe, or 4-styrylpyridine, stpy, were investigated to complement the understanding of intramolecular energy transfer process in tricarbonyl rhenium(I) complexes having an electron withdrawing group attached to polypyridyl ligands. These new compounds were synthesized, characterized and the photoisomerization quantum yields were accurately determined by (1)H NMR spectroscopy. The true quantum yields for fac-[Re(CO)(3)(Clphen) (trans-bpe)](+) were constant (Phi = 0.55) at all investigated irradiation wavelengths. However, for fac-[Re(CO)(3)(Clphen)(trans-stpy)](+), similar true quantum yields were observed only at higher energy irradiation (Phi(313 nm) = 0.53 and Phi(365 nm) = 0.57), but it decreased significantly at 404 nm (Phi = 0.41). These results indicated different deactivation pathways for the trans-stpy complex photoisomerization. Quantum yields decreased as the (3)IL(trans-L) and (3)MLCT(Re -> NN) excited states become closer and the behavior was discussed in terms of the excited state energy gaps. Additionally, luminescence properties of photoproducts, fac-[Re(CO)(3)(Clphen)(cis-L)](+), were also investigated in different environments to analyze the relative energy of the (3)MLCT(Re -> Clphen) excited state for each compound. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Amostras de borracha natural foram reticuladas por meio de radiação gama (doses de 2, 4, 6 e 8 MRad) e intumescidas: a) em n-octano, ciclo-hexano e esqualeno; b) em polibutadieno líquido (Mn=1830 g/mol; alto teor 1,4- cis) a 45°C; C) em solução de polibutadieno de baixo peso molecular (M,= 1830 g/mol; alto teor 1,4-cis) em n-octano e ciclo-hexano; d) em solução de polibutadieno de alto peso molecular (Mn= 175.000 g/rnol; alto teor 1,4-cis) emn-octano e ciclo-hexano ; e) em solução de borracha natural (Mn=779.000 g/mol) em ciclo- hexano, a 25°C. Amostras de polibutadieno (alto teor 1,4-cis) foram reticuladas por meio de radiação gama (doses de 1,s; 18 e 25 MRad) e intumescidas: a) em n-octano, ciclo-hexano e esquaieno. Salvo quando mencionado em contrário, as amostras de borracha natural e de polibutadieno foram intumescidas nas temperaturas de 25, 35 e 45°C. A partir dos ensaios de intumescirnento acima mencionados, foram determinadas as solubilidades de borracha natural e de polibutadieno em n-octano, ciclo-hexano e esqualeno através dos parâmetros de Flory-Huggins, calculados com o emprego da equação de Flory-Rehner. Verificou-se a influência da temperatura e da concentração de polimero no gel sobre o valor do parâmetro de Flory-Huggins. Também através desse parâmetro procurou-se determinar a compatibilidade entre borracha natural e polibutadieno. Foi demonstrado que cadeias lineares de baixo peso molecular de polibutadieno conseguem penetrar em amostras reticuladas de borracha natural, quando o peso molecular das cadeias lineares for bem inferior ao do arco de rede Mc das amostras reticuladas. Cadeias lineares de polibutadieno e de borracha natural com peso molecular superior ao do arco de rede da borracha natural reticulada, entretanto, não conseguem penetrar no retículo. Quranto mais alta a concentração da solução externa em moléculas de alto peso molecular, tanto menor é o grau de intumescimento da amostra reticulada.
Resumo:
Natural trans- and cis-polyisoprenes and mixtures of these polymers were analysed by near-infrared spectrophotometry. The relative absorptivity data versus the amount of isomers in synthetic mixtures showed a non-linear behaviour. The results are compared with literature data from polyisoprenes extracted from other vegetal species. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Two cis-related palladium(II) complexes [PdCl(2)(PPh(3))(tu)] (1) and [PdCl(2)(tmen)] (2) {PPh(3) = triphenylphosphine, tu = thiourea, tmen = N,N,N,N-tetramethylethylenediamine} have been synthesized and characterized by elemental analysis, IR and NMR spectroscopies, and single crystal X-ray diffraction. In 1, N-H center dot center dot center dot Cl hydrogen bonds are responsible for the formation of a dimer which connects to an adjacent one through weak C-H center dot center dot center dot Cl interactions, yielding 1D tapes. The crystal packing of compound 2 consists of zigzag ribbons of [PdCl(2)(tmen)] self-assembled by C-H center dot center dot center dot Cl hydrogen bonds which also holds the chains together, giving rise to a 2D layered structure. (C) 2006 Elsevier B.V. All rights reserved.