979 resultados para chemical factors


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanomagnetites separated from 15 different rock samples (including ocean-floor basalts from DSDP Legs 37, 45 and 46) were analyzed together with whole-rock samples by instrumental neutron-activation analysis for Sc, Cr, Co, Zn, Hf, Ta, Th and the REE La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Tm, Yb and Lu. In titanomagnetities from ocean-floor basalts and some other rocks, REE are enriched with respect to the whole-rock composition by factors of between 1.5 and 3 for light REE and between 1.0 and 1.9 for heavy REE; that is, REE with larger ionic radii are preferentially incorporated into the magnetite lattice. Three magnetite samples are REE depleted. Their whole-rock samples contain P in appreciable amounts, so apatite, an important REE-accumulating mineral, could have captured REE to some extent. All titanomagnetites show a marked negative Eu anomaly, this is most probably caused by discrimination of Eu(2+) from the magnetite lattice. Co, Zn, Hf and Ta are significantly enriched in magnetites. The distribution behaviour of Sc and Cr is masked chiefly by the crystallization of clinopyroxene and therefore is not easy to estimate. Ulvöspinel contents of about 70% for the titanomagnetites from ocean-floor basalts were estimated from qualitative microprobe analysis. Ulvöspinel contents of all other samples varied in a wide range from 20% to about 90%. No correlation could be observed between this and the REE contents of the magnetites. Ilmenite exsolution lamellae could only be observed in titanomagnetites from a doleritic basalt from Leg 45.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study focuses on mafic volcanic rocks from the Bouvet triple junction, which fall into six geochemically distinct groups: (1) N-MORB, the most widespread type, encountered throughout the study area. (2) Subalkaline volcanics, hawaiites and mugearites strongly enriched in lithophile elements and radiogenic isotopes and composing the Bouvet volcanic rise, and compositionally similar basalts and basaltic andesites from the Spiess Ridge, generated in a deeper, fertile mantle region. (3) Relatively weakly enriched basalts, T-MORB derived by the mixing of Type 1 and 2 melts and exposed near the axes of the Mid-Atlantic, Southwest Indian, and America-Antarctic Ridges. (4) Basalts with a degree of trace lithophile element enrichment similar to the Spiess Ridge and Bouvet Island rocks, but higher in K, P, Ti, and Cr. These occur within extensional structures: the rift valley of the Southwest Indian Ridge, grabens of the East Dislocation Zone, and the linear rise between the Spiess Ridge and Bouvet volcano. Their parental melts presumably separated from plume material that spread from the main channels and underwent fluid-involving differentiation in the mantle. (5) A volcanic suite ranging from basalt to rhyolite, characterized by low concentrations of lithophile elements, particularly TiO2, and occurring on the Shona Seamount and other compressional features within the Antarctic and South American plates near the Bouvet triple junction. Unlike Types 1 to 4, which display tholeiitic differentiation trends, this suite is calc-alkaline. Its parental melts were presumably related to the plume material as well but, subsequently, they underwent a profound differentiation involving fluids and assimilated surrounding rocks in closed magma chambers in the upper mantle. Alternatively, the Shona Seamount might be a fragment of an ancient oceanic island arc. (6) Enriched basalts, distinguished from the other enriched rock types in very high P and radiogenic isotope abundances and composing a tectonic uplift near the junction of the three rifts. It thus follows that the main factors responsible for the compositional diversity of volcanic rocks in this region include (i) mantle source heterogeneity, (ii) plume activity, (iii) an intricate geodynamic setup at the triple junction giving rise to stresses in adjacent plate areas, and (iv) the geological prehistory. The slow spreading rate and ensuing inefficient mixing of the heterogeneous mantle material result in strong spatial variations in basaltic compositions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Upper Miocene to Pleistocene hemipelagites and resedimented facies recovered at Holes 976B and 977A (Leg 161) in the Alboran Basin consist mainly of biogenic and detrital components, with a minor contribution of neoformed mineral phases. Diagenetic processes have not obliterated the primary deposition signal, and therefore detrital components (quartz, feldspar, detrital dolomite, rock fragments, and clays) provide information about source rocks and provenances. No major bulk or clay mineralogy differences were recognized between resedimented and hemipelagic facies; in fact, similar mineral assemblages in both types of facies suggest common source rocks. However, mineral abundance fluctuations can be related to climate variations and tectonic factors, as the main controls of sediment fill of this basin. A marked increase in smectites in Messinian sediments suggests an extensive development of soils during that time, probably favored by the alternation of wet and dry climate episodes and the relative aridification of the Mediterranean borderlands. A notable increase in detrital components suggests a sea-level fall and/or tectonic uplift during the late Pliocene. The significant increase in detrital dolomite in the uppermost Pliocene deposits suggests the uplift of dolomite-rich rocks as source areas. Mineral components in Pleistocene sediments indicate increasing tectonic stability, and clay-mineral fluctuations during the Pleistocene can be related not only to tectonic events, but also to alternating cooling and warming periods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subducted sediments play an important role in arc magmatism and crust-mantle recycling. Models of continental growth, continental composition, convergent margin magmatism and mantle heterogeneity all require a better understanding of the mass and chemical fluxes associated with subducting sediments. We have evaluated subducting sediments on a global basis in order to better define their chemical systematics and to determine both regional and global average compositions. We then use these compositions to assess the importance of sediments to arc volcanism and crust-mantle recycling, and to re-evaluate the chemical composition of the continental crust. The large variations in the chemical composition of marine sediments are for the most part linked to the main lithological constituents. The alkali elements (K, Rb and Cs) and high field strength elements (Ti, Nb, Hf, Zr) are closely linked to the detrital phase in marine sediments; Th is largely detrital but may be enriched in the hydrogenous Fe-Mn component of sediments; REE patterns are largely continental, but abundances are closely linked to fish debris phosphate; U is mostly detrital, but also dependent on the supply and burial rate of organic matter; Ba is linked to both biogenic barite and hydrothermal components; Sr is linked to carbonate phases. Thus, the important geochemical tracers follow the lithology of the sediments. Sediment lithologies are controlled in turn by a small number of factors: proximity of detrital sources (volcanic and continental); biological productivity and preservation of carbonate and opal; and sedimentation rate. Because of the link with lithology and the wealth of lithological data routinely collected for ODP and DSDP drill cores, bulk geochemical averages can be calculated to better than 30% for most elements from fewer than ten chemical analyses for a typical drill core (100-1000 m). Combining the geochemical systematics with convergence rate and other parameters permits calculation of regional compositional fluxes for subducting sediment. These regional fluxes can be compared to the compositions of arc volcanics to asses the importance of sediment subduction to arc volcanism. For the 70% of the trenches worldwide where estimates can be made, the regional fluxes also provide the basis for a global subducting sediment (GLOSS) composition and flux. GLOSS is dominated by terrigenous material (76 wt% terrigenous, 7 wt% calcium carbonate, 10 wt% opal, 7 wt% mineral-bound H2O+), and therefore similar to upper continental crust (UCC) in composition. Exceptions include enrichment in Ba, Mn and the middle and heavy REE, and depletions in detrital elements diluted by biogenic material (alkalis, Th, Zr, Hf). Sr and Pb are identical in GLOSS and UCC as a result of a balance between dilution and enrichment by marine phases. GLOSS and the systematics of marine sediments provide an independent approach to the composition of the upper continental crust for detrital elements. Significant discrepancies of up to a factor of two exist between the marine sediment data and current upper crustal estimates for Cs, Nb, Ta and Ti. Suggested revisions to UCC include Cs (7.3 ppm), Nb (13.7 ppm), Ta (0.96 ppm) and TiO2 (0.76 wt%). These revisions affect recent bulk continental crust estimates for La/Nb and U/Nb, and lead to an even greater contrast between the continents and mantle for these important trace element ratios. GLOSS and the regional sediment data also provide new insights into the mantle sources of oceanic basalts. The classical geochemical distinction between 'pelagic' and 'terrigenous' sediment sources is not valid and needs to be replaced by a more comprehensive understanding of the compositional variations in complete sedimentary columns. In addition, isotopic arguments based on surface sediments alone can lead to erroneous conclusions. Specifically, the Nd/Hf ratio of GLOSS relaxes considerably the severe constraints on the amount of sediment recycling into the mantle based on earlier estimates from surface sediment compositions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biogeochemical behavior of a group of heavy metals and metalloids in water (including their dissolved and suspended particulate forms), bottom sediments, and zoobenthos was studied in the Ob River estuary (Obskaya Guba) - Kara Sea section on the basis of data obtained during Cruise 54 of R/V Akademik Mstislav Keldysh in September-October 2007. Changes in ratios of dissolved and particulate forms of Fe, Mn, Zn, Cu, Pb, Cd, and As were shown, as well as growth of adsorbed fractions of the elements in near-bottom suspended matter under mixing of riverine and marine waters. Features of chemical element accumulation in typical benthic organisms of the Obskaya Guba and the Kara Sea were revealed, and their concentrating factors were calculated based on specific conditions of the environment. It was shown that shells of bivalves possessing higher biomass compared to other groups of organisms in the Obskaya Guba play an important role in deposition of heavy metals. In the Obskaya Guba mollusks accumulate Cd and Pb at the background level, whereas Cu and Zn contents appear to be higher than the background level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accumulation rates of Mg, Al, Si, Mn, Fe, Ni, Cu, Zn, opal, and calcium carbonate have been calculated from their concentrations in samples from equatorial Deep Sea Drilling Project sites. Maps of element accumulation rates and of Q-mode factors derived from raw data indicate that the flux of trace metals to equatorial Pacific sediments has varied markedly through time and space in response to changes in the relative and absolute influence of several depositional influences: biogenic, detrital, authigenic, and hydrothermal sedimentation. Biologically derived material dominates the sediment of the equatorial Pacific. The distributions of Cu and Zn are most influenced by surface-water biological activity, but Ni, Al, Fe, and Mn are also incorporated into biological material. All of these elements have equatorial accumulation maxima similar to those of opal and calcium carbonate at times during the past 50 m.y. Detritus distributed by trade winds and equatorial surface circulation contributes Al, non-biogenic Si, Fe, and Mg to the region. Detrital sediment is most important in areas with a small supply of biogenic debris and low bulk-accumulation rates. Al accumulation generally increases toward the north and east, indicating its continental source and distribution by the northeast trade winds. Maxima in biological productivity during middle Eocene and latest Miocene to early Pliocene time and concomitant well-developed surface circulation contributed toward temporal maxima in the accumulation rates of Cu, Zn, Ni, and Al in sediments of those ages. Authigenic material is also important only where bulk-sediment accumulation rates are low. Ni, Cu, Zn, and sometimes Mn are associated with this sediment. Fe is almost entirely of hydrothermal origin. Mn is primarily hydrothermal, but some is probably scavenged from sea water by amorphous iron hydroxide floes along with other elements concentrated in hydrothermal sediments, Ni, Cu, and Zn. During the past 50 m.y. all of these elements accumulated over the East Pacific Rise at rates nearly an order of magnitude higher than those at non-rise-crest sites. In addition, factor analysis indicates that some of this material is carried substantial distances to the west of the rise crest. Accumulation rates of Fe in basal metalliferous sediments indicate that the hydrothermal activity that supplied amorphous Fe oxides to the East Pacific Rise areas was most intense during middle Eocene and late Miocene to early Pliocene time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents data on chemical composition of bottom sediments from the Chukchi Sea and the adjacent Arctic Ocean. Multivariate statistical techniques were used for analysis of the data set and revealed that grain size fractionation of the original terrigenous component during sedimentation was the major factor of clustering of the samples in study. Secondary factors include accumulation of biogenic siliceous and carbonate material and chemogenic or biochemical accumulation of iron, manganese, and some trace elements. The latter factor was significant in areas of tectonic activity within the graben-rift system of the Chukchi Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five widespread upper Cenozoic tephra layers that are found within continental sediments of the western United States have been correlated with tephra layers in marine sediments in the Humboldt and Ventura basins of coastal California by similarities in major-and trace-element abundances; four of these layers have also been identified in deep-ocean sediments at DSDP sites 34, 36, 173, and 470 in the northeastern Pacific Ocean. These layers, erupted from vents in the Yellowstone National Park area of Wyoming and Idaho (Y), the Cascade Range of the Pacific Northwest (C), and the Long Valley area, California (L), are the Huckleberry Ridge ash bed (2.0 Ma, Y), Rio Dell ash bed (ca. 1.5 Ma, C), Bishop ash bed (0.74 Ma, L), Lava Creek B ash bed (0.62 Ma, Y), and Loleta ash bed (ca. 0.4 Ma, C). The isochronous nature of these beds allows direct comparison of chronologic and climatic data in a variety of depositional environments. For example, the widespread Bishop ash bed is correlated from proximal localities near Bishop in east-central California, where it is interbedded with volcanic and glacial deposits, to lacustrine beds near Tecopa, southeastern California, to deformed on-shore marine strata near Ventura, southwestern California, to deep-ocean sediments at site 470 in the eastern Pacific Ocean west of northern Mexico. The correlations allow us to compare isotopic ages determined for the tephra layers with ages of continental and marine biostratigraphic zones determined by magnetostratigraphy and other numerical age control and also provide iterative checks for available age control. Relative age variations of as much as 0.5 m.y. exist between marine biostratigraphic datums [for example, highest occurrence level of Discoaster brouweri and Calcidiscus tropicus (= C. macintyrei)], as determined from sedimentation rate curves derived from other age control available at each of several sites. These discrepancies may be due to several factors, among which are (1) diachronism of the lowest and highest occurrence levels of marine faunal and floral species with latitude because of ecologic thresholds, (2) upward reworking of older forms in hemipelagic sections adjacent to the tectonically active coast of the western United States and other similar analytical problems in identification of biostratigraphic and magnetostratigraphic datums, (3) dissolution of microfossils or selective diagenesis of some taxa, (4) lack of precision in isotopic age calibration of these datums, (5) errors in isotopic ages of tephra beds, and (6) large variations in sedimentation rates or hiatuses in stratigraphic sections that result in age errors of interpolated datums. Correlation of tephra layers between on-land marine and deep-ocean deposits indicates that some biostratigraphic datums (diatom and calcareous nannofossil) may be truly time transgressive because at some sites, they are found above and, at other sites, below the same tephra layers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monograph gives the first systematic description of ore-bearing guyots from the West Pacific. It is mostly based on data obtained in numerous expeditions of Russian vessels during 1984-1992. Ore deposits located on upper parts of all slopes and tops of the guyots include phosphorites associated with cobalt- and platinum-rich ferromanganese crusts. Location, origin and prospecting of mineral deposits are discussed on the base of new data on metallogenic factors (geodynamics, tectonics, magmatism, sedimentation and morphostructures).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concentrations of major-, trace- and rare earth elements in recent and Old Black Sea bottom sediments are reported in the paper. Data presented suggest that accumulation of black shale deposits was not constrained to a certain time span but proceeds in certain modern basins and generates sediments with metal contents close to those in their ancients analogues in hydrogen sulfide contaminated environments. If REE are involved in the process, their composition can vary depending on such factors as variations in redox conditions and occurrence of phosphate and barite nodules, which can induce development of either positive or negative Eu anomalies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present results from a field study of inorganic carbon (C) acquisition by Ross Sea phytoplankton during Phaeocystis-dominated early season blooms. Isotope disequilibrium experiments revealed that HCO3? was the primary inorganic C source for photosynthesis in all phytoplankton assemblages. From these experiments, we also derived relative enhancement factors for HCO3?/CO2 interconversion as a measure of extracellular carbonic anhydrase activity (eCA). The enhancement factors ranged from 1.0 (no apparent eCA activity) to 6.4, with an overall mean of 2.9. Additional eCA measurements, made using membrane inlet mass spectrometry (MIMS), yielded activities ranging from 2.4 to 6.9 U/[?g chl a] (mean 4.1). Measurements of short-term C-fixation parameters revealed saturation kinetics with respect to external inorganic carbon, with a mean half-saturation constant for inorganic carbon uptake (K1/2) of ~380 ?M. Comparison of our early springtime results with published data from late-season Ross Sea assemblages showed that neither HCO3? utilization nor eCA activity was significantly correlated to ambient CO2 levels or phytoplankton taxonomic composition. We did, however, observe a strong negative relationship between surface water pCO2 and short-term 14C-fixation rates for the early season survey. Direct incubation experiments showed no statistically significant effects of pCO2 (10 to 80 Pa) on relative HCO3? utilization or eCA activity. Our results provide insight into the seasonal regulation of C uptake by Ross Sea phytoplankton across a range of pCO2 and phytoplankton taxonomic composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationships between thermokarst activity, limnogeological processes and climate change in the Siberian Arctic are not well understood. The objective of this paper is to identify the factors controlling the patterns of deposition, using grain size distribution, organic content, elemental composition and mineralogical composition of a 137-cm long sediment core with a maximum age of ~10.9 cal. kyr BP from Lake El'gene-Kyuele in the tundra of northeastern Siberia. Eight fine sand layers are attributed to depositional events associated with thaw slump activity acting upon orthogonally oriented patterns of ice-wedge networks in the ice-rich permafrost on the NW margin of the lake catchment. Sr/Rb ratios, which correspond to the total feldspar and illite content, serve as high-resolution grain size proxies. The Br content relates to the total organic carbon content, and the Fe/Mn ratio reflects the degree of oxidisation. Our results indicate a relationship between repeated phases of fine sand input and retrogressive thaw slumping dependent on hydroclimate variability and orthogonally oriented ice-wedge networks within the catchment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Saucer-shaped iron-manganese crusts occur adjacent to gravel shoal areas in Oneida lake in central New York. The crusts usually have a crude concentric banding owing to an alternation of orange, iron-rich layers and black, iron-poor layers. Materials from both types of layers are x-ray amorphous. The Oneida lake crusts, like most other freshwater manganese nodules, contain about the same Mn concentration as marine manganese nodules, but are usually higher in Fe and lower in trace metals than their marine equivalents. Although Fe and Mn may be precipitating directly from the lake water, it is more likely that the oxidate crusts are the result of precipitation of Fe and Mn when reduced sediment pore water comes in contact with well oxygenated bottom waters. Organisms, particularly bacteria, may play a role in the formation of the crusts, but to date no evidence of this has been found.