914 resultados para cannabinoid receptor 1
Resumo:
Plant-derived cannabinoids (phytocannabinoids) are compounds with emerging therapeutic potential. Early studies suggested that cannabidiol (CBD) has anticonvulsant properties in animal models and reduced seizure frequency in limited human trials. Here, we examine the anti-epileptiform and anti-seizure potential of CBD using in vitro electrophysiology and an in vivo animal seizure model, respectively. CBD (0.01-100 muM) effects were assessed in vitro using the Mg(2+)-free and 4-aminopyridine (4-AP) models of status epilepticus-like epileptiform activity in hippocampal brain slices via multi-electrode array (MEA) recordings. In the Mg(2+)-free model, CBD decreased epileptiform local field potential (LFP) burst amplitude (in CA1 and dentate gyrus (DG) regions) and burst duration (in all regions) and increased burst frequency (in all regions). In the 4-AP model, CBD decreased LFP burst amplitude (in CA1, only at 100 muM CBD), burst duration (in CA3 and DG), and burst frequency (in all regions). CBD (1, 10 and 100 mg/kg) effects were also examined in vivo using the pentylenetetrazole (PTZ) model of generalised seizures. CBD (100 mg/kg) exerted clear anticonvulsant effects with significant decreases in incidence of severe seizures and mortality in comparison to vehicle-treated animals. Finally, CBD acted with only low affinity at cannabinoid CB(1) receptors and displayed no agonist activity in [(35)S]GTPgammaS assays in cortical membranes. These findings suggest that CBD acts to inhibit epileptiform activity in vitro and seizure severity in vivo. Thus, we demonstrate the potential of CBD as a novel anti-epileptic drug (AED) in the unmet clinical need associated with generalised seizures.
Resumo:
Appetite stimulation via partial agonism of cannabinoid type 1 receptors by Δ9tetrahydrocannabinol (Δ9THC) is well documented and can be modulated by non-Δ9THC phytocannabinoids. Δ9THC concentrations sufficient to elicit hyperphagia induce changes to both appetitive (reduced latency to feed) and consummatory (increased meal one size and duration) behaviours. Here, we show that a cannabis extract containing too little Δ9THC to stimulate appetite can induce hyperphagia solely by increasing appetitive behaviours. Twelve, male Lister hooded rats were presatiated before treatment with a low-Δ9THC cannabis extract (0.5, 1.0, 2.0 and 4.0 mg/kg). Hourly intake and meal pattern data were recorded and analyzed using one-way analyses of variance followed by Bonferroni post-hoc tests. The cannabis extract significantly increased food intake during the first hour of testing (at 4.0 mg/kg) and significantly reduced the latency to feed versus vehicle treatments (at doses ≥1.0 mg/kg). Meal size and duration were unaffected. These results show only the increase in appetitive behaviours, which could be attributed to non-Δ9THC phytocannabinoids in the extract rather than Δ9THC. Although further study is required to determine the constituents responsible for these effects, these results support the presence of non-Δ9THC cannabis constituent(s) that exert a stimulatory effect on appetite and likely lack the detrimental psychoactive effects of Δ9THC.
Resumo:
Hippocampal CA1 pyramidal neurons are highly sensitive to ischemic damage, whereas neighboring CA3 pyramidal neurons are less susceptible. It is proposed that switching of AMPA receptor (AMPAR) subunits on CA1 neurons during an in vitro model of ischemia, oxygen/glucose deprivation (OGD), leads to an enhanced permeability of AMPARs to Ca2+, resulting in delayed cell death. However, it is unclear whether the same mechanisms exist in CA3 neurons and whether this underlies the differential sensitivity to ischemia. Here, we investigated the consequences of OGD for AMPAR function in CA3 neurons using electrophysiological recordings in rat hippocampal slices. Following a 15 min OGD protocol, a substantial depression of AMPAR-mediated synaptic transmission was observed at CA3 associational/commissural and mossy fiber synapses but not CA1 Schaffer collateral synapses. The depression of synaptic transmission following OGD was prevented by metabotropic glutamate receptor 1 (mGluR1) or A3 receptor antagonists, indicating a role for both glutamate and adenosine release. Inhibition of PLC, PKC, or chelation of intracellular Ca2+ also prevented the depression of synaptic transmission. Inclusion of peptides to interrupt the interaction between GluA2 and PICK1 or dynamin and amphiphysin prevented the depression of transmission, suggesting a dynamin and PICK1-dependent internalization of AMPARs after OGD. We also show that a reduction in surface and total AMPAR protein levels after OGD was prevented by mGluR1 or A3 receptor antagonists, indicating that AMPARs are degraded following internalization. Thus, we describe a novel mechanism for the removal of AMPARs in CA3 pyramidal neurons following OGD that has the potential to reduce excitotoxicity and promote neuroprotection
Resumo:
BACKGROUND: Dextran-40 is effective in reducing postoperative Doppler-detectable embolization in patients undergoing carotid endarterectomy (CEA). Dextrans are thought to have antithrombotic and antiplatelet effects. The mode of action is unclear. In rats, dextran blocks uptake of tissue plasminogen activator (tPA) by mannose-binding receptors. Because this would have the effect of enhancing endogenous fibrinolysis, we explored this effect of dextran-40 on fibrinolysis in man. METHODS: Twenty patients undergoing endovascular stenting for abdominal aortic aneurysm were randomized to receive 100 mL of 10% dextran-40 or saline, over 1 hour, during their operation in addition to heparin. Blood samples were taken preoperatively, intraoperatively (immediately after operative procedure), and 24 hours postoperatively. Thrombi were formed in a Chandler loop and used to assess endogenous fibrinolysis over 24 hours, measured as the fall in thrombus weight, and the release of fluorescently labelled fibrinogen from the thrombus. Plasma samples were analyzed for markers of fibrinolysis; plasmin-antiplasmin (PAP), PAI-1, and t-PA, and for functional von Willebrand factor (vWF). Platelet response to thrombin and other agonists was measured by flow cytometry. RESULTS: Thrombi formed ex vivo from the intraoperative blood samples from the dextran-treated patients exhibited significantly greater fibrinolysis vs preoperative samples, seen both as a significantly greater percentage reduction in thrombus weight (from 34.7% to 70.6% reduction) and as an 175% increase in the release of fluorescence (P < .05). Fibrinolysis returned to baseline levels the next day. No change was seen in the saline-treated group. Plasma levels of PAP and PAI-1 increased significantly postoperatively in the dextran-treated group vs the saline group (P < .05). The postoperative level of functional VWF was significantly lower in the dextran-treated group vs controls. A specific reduction occurred in the platelet response to thrombin, but not to other agonists, in the intraoperative samples from the dextran-treated group (11.1% vs 37.1%; P = .022), which was not seen in the controls. CONCLUSIONS: These data are consistent with a rise in plasmin due to dextran blockade of tPA uptake in vivo, leading to enhanced fibrinolysis, cleavage of vWF and of the platelet protease-activated receptor-1 (PAR-1) thrombin receptor. This suggests that dextran exerts a combined therapeutic effect, enhancing endogenous fibrinolysis, whilst also reducing platelet adhesion to vWF and platelet activation by thrombin. The proven antithrombotic efficacy of low-dose dextran in carotid surgery may be applicable to wider therapeutic use.
Resumo:
We report on the assembly of tumor necrosis factor receptor 1 (TNF-R1) prior to ligand activation and its ligand-induced reorganization at the cell membrane. We apply single-molecule localization microscopy to obtain quantitative information on receptor cluster sizes and copy numbers. Our data suggest a dimeric pre-assembly of TNF-R1, as well as receptor reorganization toward higher oligomeric states with stable populations comprising three to six TNF-R1. Our experimental results directly serve as input parameters for computational modeling of the ligand-receptor interaction. Simulations corroborate the experimental finding of higher-order oligomeric states. This work is a first demonstration how quantitative, super-resolution and advanced microscopy can be used for systems biology approaches at the single-molecule and single-cell level.
Resumo:
BACKGROUND: The cannabinoid cannabinoid type 1 (CB1) neutral antagonist tetrahydrocannabivarin (THCv) has been suggested as a possible treatment for obesity, but without the depressogenic side-effects of inverse antagonists such as Rimonabant. However, how THCv might affect the resting state functional connectivity of the human brain is as yet unknown. METHOD: We examined the effects of a single 10mg oral dose of THCv and placebo in 20 healthy volunteers in a randomized, within-subject, double-blind design. Using resting state functional magnetic resonance imaging and seed-based connectivity analyses, we selected the amygdala, insula, orbitofrontal cortex, and dorsal medial prefrontal cortex (dmPFC) as regions of interest. Mood and subjective experience were also measured before and after drug administration using self-report scales. RESULTS: Our results revealed, as expected, no significant differences in the subjective experience with a single dose of THCv. However, we found reduced resting state functional connectivity between the amygdala seed region and the default mode network and increased resting state functional connectivity between the amygdala seed region and the dorsal anterior cingulate cortex and between the dmPFC seed region and the inferior frontal gyrus/medial frontal gyrus. We also found a positive correlation under placebo for the amygdala-precuneus connectivity with the body mass index, although this correlation was not apparent under THCv. CONCLUSION: Our findings are the first to show that treatment with the CB1 neutral antagonist THCv decreases resting state functional connectivity in the default mode network and increases connectivity in the cognitive control network and dorsal visual stream network. This effect profile suggests possible therapeutic activity of THCv for obesity, where functional connectivity has been found to be altered in these regions.
Resumo:
Nuclear factor-kappa B (NFKB), a pivotal player in inflammatory responses, is constitutively expressed in the pineal gland. Corticosterone inhibits pineal NFKB leading to an enhancement of melatonin production, while tumor necrosis factor (TNF) leads to inhibition of Aa-nat transcription and the production of N-acetylserotonin in cultured glands. The reduction in nocturnal melatonin surge favors the mounting of the inflammatory response. Despite these data, there is no clear evidence of the ability of the pineal gland to recognize molecules that signal infection. This study investigated whether the rat pineal gland expresses receptors for lipopolysaccharide (LPS), the endotoxin from the membranes of Gram-negative bacteria, and to establish the mechanism of action of LPS. Here, we show that pineal glands possess both CD14 and toll-like receptor 4 (TLR4), membrane proteins that bind LPS and trigger the NFKB pathway. LPS induced the nuclear translocation of p50/p50 and p50/RELA dimers and the synthesis of TNF. The maximal expression of TNF in cultured glands coincides with an increase in the expression of TNF receptor 1 (TNFR1) in isolated pinealocytes. In addition, LPS inhibited the synthesis of N-acetylserotonin and melatonin. Therefore, the pineal gland transduces Gram-negative endotoxin stimulation by producing TNF and inhibiting melatonin synthesis. Here, we provide evidence to reinforce the idea of an immune-pineal axis, showing that the pineal gland is a constitutive player in the innate immune response.
Resumo:
PURPOSE. FTY720 (fingolimod) is an immunomodulatory drug capable of preventing T-cell migration to inflammatory sites by binding to and subsequently downregulating the expression of sphingosine-1 phosphate receptor 1 (S1P(1)) leading in turn to T-cell retention in lymphoid organs. Additional effects of FTY720 by increasing functional activity of regulatory T cells have recently been demonstrated, raising the conversion of conventional T cells into regulatory T cells and affecting the sequestration of regulatory T cells in normal mice. In this study, the action of FTY720 in the ocular autoimmune model in mice was investigated. METHODS. Mice were immunized with 161-180 peptide and pertussis toxin and were treated with 1 mg/kg/d FTY720 by gavage (7-21 days postimmunization [dpi]) or left untreated. Spleen cells, harvested 21 dpi, were cultured and assayed for cytokine production. Draining lymph node, spleen, and eye cells 21 dpi were assayed for quantification of T-cell populations. Disease severity was evaluated by histologic examination of the enucleated eyes at 21 and 49 dpi. In addition, anti-IRBP antibodies were analyzed by ELISA. RESULTS. FTY720 was effective in suppressing the experimental autoimmune uveitis score. Although there was a reduction in the number of eye-infiltrating cells, FTY did not prevent Treg accumulation at this site. FTY720 leads to a significant increase of CD4(+)IFN-gamma(+) and CD4(+)Foxp3(+) cell percentages in lymph nodes, suggesting that this site could be the source of Treg cells found in the eye. CONCLUSIONS. The data showed that treatment in vivo with FTY720 was able to suppress EAU in mice. These results are indicative of the possible therapeutic use of FTY720 in ocular autoimmune processes. (Invest Ophthalmol Vis Sci. 2010;51:2568-2574) DOI:10.1167/iovs.09-4769
Resumo:
Background: Gamma-linolenic acid is a known inhibitor of tumour cell proliferation and migration in both in vitro and in vivo conditions. The aim of the present study was to determine the mechanisms by which gamma-linolenic acid (GLA) osmotic pump infusion alters glioma cell proliferation, and whether it affects cell cycle control and angiogenesis in the C6 glioma in vivo. Methods: Established C6 rat gliomas were treated for 14 days with 5 mM GLA in CSF or CSF alone. Tumour size was estimated, microvessel density (MVD) counted and protein and mRNA expression measured by immunohistochemistry, western blotting and RT-PCR. Results: GLA caused a significant decrease in tumour size (75 +/- 8.8%) and reduced MVD by 44 +/- 5.4%. These changes were associated with reduced expression of vascular endothelial growth factor (VEGF) (71 +/- 16%) and the VEGF receptor Flt1 (57 +/- 5.8%) but not Flk1. Expression of ERK1/2 was also reduced by 27 +/- 7.7% and 31 +/- 8.7% respectively. mRNA expression of matrix metalloproteinase-2 (MMP2) was reduced by 35 +/- 6.8% and zymography showed MMP2 proteolytic activity was reduced by 32 +/- 8.5%. GLA altered the expression of several proteins involved in cell cycle control. pRb protein expression was decreased (62 +/- 18%) while E2F1 remained unchanged. Cyclin D1 protein expression was increased by 42 +/- 12% in the presence of GLA. The cyclin dependent kinase inhibitors p21 and p27 responded differently to GLA, p27 expression was increased (27 +/- 7.3%) while p21 remained unchanged. The expression of p53 was increased (44 +/- 16%) by GLA. Finally, the BrdU incorporation studies found a significant inhibition (32 +/- 11%) of BrdU incorporation into the tumour in vivo. Conclusion: Overall the findings reported in the present study lend further support to the potential of GLA as an inhibitor of glioma cell proliferation in vivo and show it has direct effects upon cell cycle control and angiogenesis. These effects involve changes in protein expression of VEGF, Flt1, ERK1, ERK2, MMP2, Cyclin D1, pRb, p53 and p27. Combination therapy using drugs with other, complementary targets and GLA could lead to gains in treatment efficacy in this notoriously difficult to treat tumour.
Resumo:
Materials used in current technological approaches for the removal of mercury lack selectivity. Given that this is one of the main features of supramolecular chemistry, receptors based on calix[4]arene and calix[4]resorcarene containing functional groups able to interact selectively with polluting ions while discriminating against biologically essential ones were designed. Thus two receptors, a partially functionalized calix[4]arene derivative, namely, 5,11,17,23-tetra-tert-butyl [25-27-bis(diethyl thiophosphate amino)dihydroxy] calix[4]arene (1) and a fully functionalized calix[4]resorcarene, 4,6,10,12,16,18,22,24-diethyl thiophosphate calix[4]resorcarene (2) are introduced. Mercury(II) was the identified target due to the environmental and health problems associated with its presence in water Thus following the synthesis and characterization of 1 and 2 in solution ((1)HNMR) and in the solid state (X-ray crystallography) the sequence of experimental events leading to cation complexation studies in acetonitrile and methanol ((1)H NMR, conductance, potentiometric, and calorimetric measurements) with the aim of assessing their behavior as mercury selective receptors are described. The cation selectivity pattern observed in acetonitrile follows the sequence Hg(II) > Cu(II) > Ag(I). In methanol 1 is also selective for Hg(II) relative to Ag(I) but no interaction takes place between this receptor and Cu(II) in this solvent. Based on previous results and experimental facts shown in this paper, it is concluded that the complexation observed with Cu(II) in acetonitrile occurs through the acetonitrile-receptor adduct rather than through the free ligand. Receptor 2 has an enhanced capacity for uptaking Hg(II) but forms metalate complexes with Cu(II). These studies in solution guided the inmobilization of receptor 1 into a silica support to produce a new and recyclable material for the removal of Hg(II) from water. An assessment on its capacity to extract this cation from water relative to Cu(II) and Ag (I) shows that the cation selectivity pattern of the inmobilized receptor is the same as that observed for the free receptor in methanol. These findings demonstrate that fundamental studies play a critical role in the selection of the receptor to be attached to silicates as well as in the reaction medium used for the synthesis of the new decontaminating agent.
Resumo:
Interleukin-22 (IL-22) is a member of the interleukin-10 cytokine family, which is involved in anti-microbial defenses, tissue damage protection and repair, and acute phase responses. Its signaling mechanism involves the sequential binding of IL-22 to interleukin-22 receptor 1 (IL-22R1), and of this dimer to interleukin-10 receptor 2 (IL-10R2) extracellular domain. We report a 1.9 A crystal structure of the IL-22/IL-22R1 complex, revealing crucial interacting residues at the IL-22/IL-22R1 interface. Functional importance of key residues was confirmed by site-directed mutagenesis and functional studies. Based on the X-ray structure of the binary complex, we discuss a molecular basis of the IL-22/IL-22R1 recognition by IL-10R2.
Resumo:
In this study, a BCR-ABL expressing human chronic myelogenous leukaemia cell line (K562) was used to investigate the antitumoral potential of a novel lectin (CvL) purified from the marine sponge Cliona varians. CvL inhibited the growth of K562 cells with an IC50 value of 70 g/ml, but was ineffective to normal human peripheral blood lymphocytes in the same range of concentrations tested (180 g/ml). Cell death occurred after 72 h of exposure to the lectin and with sign of apoptosis as analysed by DAPI staining. Investigation of the possible effectors of this process showed that cell death occurred in the presence of Bcl-2 and Bax expression, and involved a caspase-independent pathway. Confocal fluorescence microscopy indicated a major role for the lysosomal protease cathepsin B in mediating cell death. Accordingly, pre-incubation of K562 cells with the cathepsin inhibitor L-trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane (E-64) abolished the cytotoxic effect of CvL. Furthermore, we found upregulation of tumor necrosis factor receptor 1 (TNFR1) and down-modulation of p65 subunit of nuclear factor kappa B (NF1547;B) expression in CvL-treated cells. These effects were accompanied by increased levels of p21 and downmodulation of pRb, suggesting that CvL is capable of cell cycle arrest. Collectively, these findings suggest that cathepsin B acts as death mediator in CvL-induced cytotoxicity possibly in a still uncharacterized connection with the membrane death receptor pathway
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Estudou-se a distribuição espaço-temporal do fator de crescimento fibroblástico básico (bFGF), do receptor 1 do fator de crescimento fibroblástico (FGFR1) e do receptor 2 do fator de crescimento fibroblástico (FGFR2) na placenta bubalina, correlacionando-a à proliferação celular. Para a detecção do bFGF, FGFR1, FGFR2 e antígeno Ki-67, colheram-se 12 placentas de búfalas nos terços inicial, médio e final da gestação, em abatedouros, e realizaram-se testes de imunoistoquímica. Detectou-se e avaliou-se a expressão do bFGF, do FGFR1, do FGFR2 e do antígeno Ki-67 ao longo da gestação. No compartimento fetal da placenta, observaram-se correlações positivas entre a expressão do bFGF e Ki-67, entre FGFR1 e Ki-67 e entre FGFR2 com Ki-67 (r=0,313, 0,358 e 0,384, respectivamente). No epitélio e estroma maternos observaram-se altas correlações entre FGFR1 e Ki-67 (r=0,739 e r=0,511, respectivamente). Os resultados sugerem envolvimento do bFGF, FGFR1 e FGFR2 na proliferação do trofoblasto enquanto no compartimento materno da placenta bubalina apenas o FGFR1 atuaria como modulador dessa atividade.