927 resultados para calcium pyrophosphate
Resumo:
The partitioning of Y and Ho between CaCO3 (calcite and aragonite respectively) and seawater was experimentally investigated at 25 degrees C and I atm. Both Y and Ho were observed to be strongly partitioned into the overgrowths of calcite or aragonite. Their partition coefficients, D-Y and D-Ho, were determined to be similar to 520-1400 and similar to 700-1900 in calcite, similar to 1200-2400 and similar to 2400-4300 in aragonite, respectively. Y fractionates from Ho during the coprecipitation with either calcite or aragonite. Within our experimental conditions, the fractionation factor, k = D-Y/D-Ho, was determined to be similar to 0.62-0.77 in calcite and similar to 0.50-0.57 in aragonite, respectively. The aqueous complexation of Y and Ho, which is a function of solution chemistry, probably plays an important role in both the partitioning and the fractionation. Further analyses suggest that the difference in covalency between Y and Ho associated with changes in their coordination environments is the determinant factor to the Y-Ho fractionation in the H2CO3-CaCO3 System.
Resumo:
To elucidate the physicochemical properties of silk protein, we studied the effects of calcium chloride and ethanol on the gelation of fibroin. Fibroin was treated with 5.0 M calcium chloride in water (Ca/W) or 5.0 M calcium chloride in 20% (v/v) ethanol (Ca/Et) and the rheological properties of colloidal fibroin were investigated. The Ca/W-treatment promoted an increased rate of gelation and gave higher gel strength than the Ca/Et-treatment. The maximum gel strengths of Ca/W- and Ca/Et-treated fibroins were obtained at pH 7.0 and pH 5.5, respectively. Scanning electron micrographs showed that the Ca/W-treated fibroin gel had a more developed three-dimensional molecular network than the Ca/Et-treated gel. Further, FT-IR spectra suggested that Ca/W-treated fibroin has more of a beta-structure than Ca/Et-treated one in colloidal conditions. This study indicated that the use of calcium chloride alone was more beneficial to the gelation of fibroin than combined use with ethanol.
Resumo:
The medical treatment of chronic heart failure has undergone a dramatic transition in the past decade. Short-term approaches for altering hemodynamics have given way to long-term, reparative strategies, including beta-adrenergic receptor (betaAR) blockade. This was once viewed as counterintuitive, because acute administration causes myocardial depression. Cardiac myocytes from failing hearts show changes in betaAR signaling and excitation-contraction coupling that can impair cardiac contractility, but the role of these abnormalities in the progression of heart failure is controversial. We therefore tested the impact of different manipulations that increase contractility on the progression of cardiac dysfunction in a mouse model of hypertrophic cardiomyopathy. High-level overexpression of the beta(2)AR caused rapidly progressive cardiac failure in this model. In contrast, phospholamban ablation prevented systolic dysfunction and exercise intolerance, but not hypertrophy, in hypertrophic cardiomyopathy mice. Cardiac expression of a peptide inhibitor of the betaAR kinase 1 not only prevented systolic dysfunction and exercise intolerance but also decreased cardiac remodeling and hypertrophic gene expression. These three manipulations of cardiac contractility had distinct effects on disease progression, suggesting that selective modulation of particular aspects of betaAR signaling or excitation-contraction coupling can provide therapeutic benefit.
Resumo:
The phenotype of somatic cells has recently been found to be reversible. Direct reprogramming of one cell type into another has been achieved with transduction and over expression of exogenous defined transcription factors emphasizing their role in specifying cell fate. To discover early and novel endogenous transcription factors that may have a role in adult-derived stem cell acquisition of a cardiomyocyte phenotype, mesenchymal stem cells from human and mouse bone marrow and rat liver were co-cultured with neonatal cardiomyocytes as an in vitro cardiogenic microenvironment. Cell-cell communications develop between the two cell types as early as 24 hrs in co-culture and are required for elaboration of a myocardial phenotype in the stem cells 8-16 days later. These intercellular communications are associated with novel Ca(2+) oscillations in the stem cells that are synchronous with the Ca(2+) transients in adjacent cardiomyocytes and are detected in the stem cells as early as 24-48 hrs in co-culture. Early and significant up-regulation of Ca(2+)-dependent effectors, CAMTA1 and RCAN1 ensues before a myocardial program is activated. CAMTA1 loss-of-function minimizes the activation of the cardiac gene program in the stem cells. While the expression of RCAN1 suggests involvement of the well-characterized calcineurin-NFAT pathway as a response to a Ca(2+) signal, the CAMTA1 up-regulated expression as a response to such a signal in the stem cells was unknown. Cell-cell communications between the stem cells and adjacent cardiomyocytes induce Ca(2+) signals that activate a myocardial gene program in the stem cells via a novel and early Ca(2+)-dependent intermediate, up-regulation of CAMTA1.
Resumo:
MAPKKK dual leucine zipper-bearing kinases (DLKs) are regulators of synaptic development and axon regeneration. The mechanisms underlying their activation are not fully understood. Here, we show that C. elegans DLK-1 is activated by a Ca(2+)-dependent switch from inactive heteromeric to active homomeric protein complexes. We identify a DLK-1 isoform, DLK-1S, that shares identical kinase and leucine zipper domains with the previously described long isoform DLK-1L but acts to inhibit DLK-1 function by binding to DLK-1L. The switch between homo- or heteromeric DLK-1 complexes is influenced by Ca(2+) concentration. A conserved hexapeptide in the DLK-1L C terminus is essential for DLK-1 activity and is required for Ca(2+) regulation. The mammalian DLK-1 homolog MAP3K13 contains an identical C-terminal hexapeptide and can functionally complement dlk-1 mutants, suggesting that the DLK activation mechanism is conserved. The DLK activation mechanism is ideally suited for rapid and spatially controlled signal transduction in response to axonal injury and synaptic activity.
Resumo:
In response to a burgeoning interest in the prospective clinical applications of hydraulic calcium (alumino)silicate cements, the in vitro bioactivity and dissolution characteristics of a white Portland cement have been investigated. The formation of an apatite layer within 6 h of contact with simulated body fluid was attributed to the rapid dissolution of calcium hydroxide from the cement matrix and to the abundance of pre-existing Si-OH nucleation sites presented by the calcium silicate hydrate phase. A simple kinetic model has been used to describe the rate of apatite formation and an apparent pseudo-second-order rate constant for the removal of HPO42- ions frorn solultion has been calculated (k(2) = 5.8 x 10(-4) g mg(-1)). Aspects of the chemistry of hydraulic cements are also discussed with respect to their potential use in the remedial treatment of living tissue. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 90A: 166-174, 2009
Resumo:
The aim of the current study was to evaluate the impact of chitosan derivatives, namely N-octyl-chitosan and N-octyl-O-sulfate chitosan, incorporated in calcium phosphate implants to the release profiles of model drugs. The rate and extent of calcein (on M.W. 650 Da) ED, and FITC-dextran (M.W. 40 kDa) on in vitro release were monitored by fluorescence spectroscopy. Results show that calcein release is affected by the type of chitosan derivative used. A higher percentage of model drug was released when the hydrophilic polymer N-octyl-sulfated chitosan was present in the tablets compared with the tablets containing the hydrophobic polymer N-octyl-chitosan. The release profiles of calcein or FD from tablets containing N-octyl-O-sulfate revealed a complete release for FD after 120 h compared with calcein where 20% of the drug was released over the same time period. These results suggest that the difference in the release profiles observed from the implants is dependent on the molecular weight of the model drugs. These data indicate the potential of chitosan derivatives in controlling the release profile of active compounds from calcium phosphate implants. (C) 2009 Elsevier Ltd. All rights reserved.