992 resultados para bulk glasses
Resumo:
The need for high purity materials for the growth of epitaxial layers of GaAs and the limitations of present source materials are discussed. A for purifying bulk quantitites of GaAs using chemical vapour transport is presented. GaAs is contained in a silica capsule which has a small orifice allow movement of gas between inside and outside. The capsule is contained in a heated tube and hydrogen chloride is used as the transporting agent. Growth rates of 0.1 g/h have been obtained and evidence for the purification is presented along with a discussion of the principles involved. The potentialities of the method for both purification and for the growth of single crystal substrate material are stressed.--AA
Resumo:
The cryptand derivative has H-bond mediated trigonal network structure that leads to octupolar bulk nonlinearity.
Resumo:
Alternating differential scanning calorimetry (ADSC) studies were undertaken to investigate the effect of Tl addition on the thermal properties of As30Te70-xTlx ( 6 <= x <= 22 at%) glasses. These include parameters such as glass-transition temperature (T-g), changes in specific heat capacity (Delta C-p) and relaxation enthalpy (Delta H-NR) at the glass transition. It was found that T-g of the glasses decreased with the addition of Tl, which is in contrast to the dependence of T-g in As - Te glasses on the addition of Al and In. The change in heat capacity Delta C-p through the glass transition was also found to decrease with increasing Tl content. The addition of Tl to the As - Te matrix may lead to a breaking of As - Te chains and the formation of Tl+Te- AsTe2/2 dipoles. There was no significant dependence of the change of relaxation enthalpy, through the glass transition, with composition.
Resumo:
The influences of the amorphous matrix and crystalline dendrite phases on the hardness and elastic moduli of Zr/Ti-based bulk metallic glass matrix composites have been assessed. While the moduli of the composites correspond to those predicted by the rule of mixtures, the hardness of the composites is similar to that of the matrix, suggesting that the plastic flow in the composites under constrained conditions such as indentation is controlled by the flow resistance of the contiguous matrix. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Effect Of Molybdenum And Silicon On The Electrochemical Corrosion Behavior Of Fenib Metallic Glasses
Resumo:
Single crystal E.P.R. studies of copper as a dopant in lithium potassium sulphate, lithium ammonium sulphate and lithium sodium sulphate have been carried out from room temperature down to 77K. The three Jahn-Teller (JT) systems behave very similarly to one another. The room temperature dynamic JT spectra with giso = 2·19 ± 0·01 and Aiso = ±(33 ± 4) times 10-4 cm-1 transform around 247 K to spectra characterized by randomly frozen-in axial strains with g‖ = 2·4307 ± 0·0005, g⊥ = 2·083 ± 0·001, A‖ = ±(116 ± 2) times 10-4 cm-1 and A⊥ = ∓(14 ± 4) times 10-4 cm-1. We proposed that the low temperature phase (below 247 K) of each of these systems provides an example of a Jahn-Teller glass.
Resumo:
ESR and optical studies of phosphomolybdate and phosphotungstate glasses are discussed. Both the ESR and optical results indicate that molybdenum or tungsten ions are present in distorted octahedral environments in these glasses. In addition, ESR spectra of Mo5+ and W5+ ions show that the d electrons are localized on molybdenum and tungsten sites respectively. The variation of gperpendicular and gshort parallel values has been examined using appropriate structural models of these glasses.
Resumo:
The d.c. conductivity of phosphomolybdate and phosphotungstate glasses is discussed. The conductivity of these glasses is due to the hopping of electrons between two valence states (Mo5+ to Mo6+ or W5+ W6+). In some of the glasses, the activation energy itself is found to be a function of temperature. This appears to be due to thermally activated and variable-range hopping mechanisms operating in different temperature regimes. The relation between conductivity and the [M5+]/[Mtotal](M ≡ Mo, W) ratio does not show any systematic variation. This anomaly can be understood using the structural models of these glasses. In contrast, Mott's theory and the Triberis and Friedman model have been used to obtain conductivity parameters such as the percolation distance Rij and 2agrRij (agr is the tunnelling probability). The conductivity parameter 2agrRij is quite useful to resolve the controversy regarding the tunnelling term exp(2agrRij) existing in the literature. For low values of 2agrRij, it is shown that the exp (2agrRij) term is very significant.
Resumo:
The temperature dependence of the longitudinal and shear ultrasound wave velocities in (As2S3)1-x(PbS)x glasses has been determined from 77 to 300K using a pulse echo interferometer. Elastic constants of the prepared glasses at room temperature have been computed from the experimental data. Both longitudinal and shear ultrasound wave velocities in these glasses show a linear temperature dependence with a negative temperature coefficient.
Resumo:
It has been possible to identify two critical compositions in the IV-VI chalcogenide glassy system GexSe100-x by the anomalous variations of the high-pressure electrical resistivity behavior. The first critical composition, the chemical threshold, refers to the stoichiometric composition. The second critical composition, identified recently as the mechanical percolation threshold, is connected with the structural rigidity of the material.