987 resultados para broadband laser


Relevância:

20.00% 20.00%

Publicador:

Resumo:

he thickness dependence of the electrical properties in the thin films of uniaxial SrBi2Nb2O9 has been studied in this report. According to many published literatures, it could be an effective way to identify the basic conduction process. The laser ablation was chosen as the deposition technique to ensure an oriented growth and a proper stoichiometric deposition. The structural, dielectric and conduction properties were studied as a function of thickness. The films showed good ferroelectric properties, an ordered growth, and a space-charge controlled conduction process, which was double checked by reversing the polarity of the applied voltage, and also by examining the high field current response of the sample varying in thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three- dimensional, transient model is developed for studying heat transfer, fluid flow, and mass transfer for the case of a single- pass laser surface alloying process. The coupled momentum, energy, and species conservation equations are solved using a finite volume procedure. Phase change processes are modeled using a fixed-grid enthalpy-porosity technique, which is capable of predicting the continuously evolving solid- liquid interface. The three- dimensional model is able to predict the species concentration distribution inside the molten pool during alloying, as well as in the entire cross section of the solidified alloy. The model is simulated for different values of various significant processing parameters such as laser power, scanning speed, and powder feedrate in order to assess their influences on geometry and dynamics of the pool, cooling rates, as well as species concentration distribution inside the substrate. Effects of incorporating property variations in the numerical model are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Encapsulated and hollow closed-cage onion-like structures of WS2 and MoS2 were prepared by laser ablation of the corresponding layered structures in argon atmosphere at four varied temperatures. A detailed study for WS2 indicates that only metal-filled onion-like structures are produced at temperatures Tless-than-or-equals, slant650°C, whereas a mixture of metal-filled and hollow structures are produced at Tgreater-or-equal, slanted850°C. The encapsulated metal is identified to be predominantly the metastable β phase of tungsten. Very short tube-like or elongated polyhedral structures are also obtained at high temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycrystalline CaBi2Ta2O9 thin films were grown on Pt/TiO2/SiO2/Si (100) substrates using a pulsed laser deposition technique. The influence of substrate temperature and oxygen pressure on crystallization and orientation of the films was studied. In-situ films deposited under a combination of higher substrate temperature and lower oxygen pressure exhibited a preferred c-axis orientation. Micro-Raman spectroscopy was used for complete understanding of phase evolution of CBT films. Thin films deposited at higher substrate temperatures showed larger grain size and higher surface roughness, observed by atomic force microscopy. The values of maximum polarization (2Pmnot, vert, similar13.4 μC/cm2), remanent polarization (2Prnot, vert, similar4.6 μC/cm2) and the coercive field Ec was about 112 kV/cm obtained for the film deposited at 650°C and annealed at 750°C. The room temperature, dielectric data revealed a dependence on the grain size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As deposited amorphous and crystallized thin films of Ti 37.5% Si alloy deposited by pulsed laser ablation technique were irradiated with 100 keV Xe(+) ion beam to an ion fluence of about 10(16) ions-cm(-2). Transmission electron microscopy revealed that the implanted Xe formed amorphous nanosized clusters in both cases. The Xe ion-irradiation favors nucleation of a fcc-Ti(Si) phase in amorphous films. However, in crystalline films, irradiation leads to dissolution of the Ti(5)Si(3) intermetallic phase. In both cases, Xe irradiation leads to the evolution of similar microstructures. Our results point to the pivotal role of nucleation in the evolution of the microstructure under the condition of ion implantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to obtain basic understanding of microstructure evolution in laser-surface-alloyed layers, aluminum was surface alloyed on a pure nickel substrate using a CO2 laser. By varying the laser scanning speed, the composition of the surface layers can be systematically varied. The Ni content in the layer increases with increase in scanning speed. Detailed cross-sectional transmission electron microscopic study reveals complexities in solidification behavior with increased nickel content. It is shown that ordered B2 phase forms over a wide range of composition with subsequent precipitation of Ni2Al, an ordered omega phase in the B2 matrix, during solid-state cooling. For nickel-rich alloys associated with higher laser scan speed, the fcc gamma phase is invariably the first phase to grow from the liquid with solute trapping. The phase reorders in the solid state to yield gamma' Ni3Al. The phase competes with beta AlNi, which forms massively from the liquid. The beta AlNi transforms martensitically to a 3R structure during cooling in solid state. The results can be rationalized in terms of a metastable phase diagram proposed earlier. However, the results are at variance with earlier studies of laser processing of nickel-rich alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Films with Fe–25 at.% Ge composition are deposited by the process of laser ablation on single crystal NaCl and Cu substrates at room temperature. Both the vapor and liquid droplets generated in this process are quenched on the substrate. The microstructures of the embedded droplets show size as well as composition dependence. The hierarchy of phase evolution from amorphous to body-centered cubic (bcc) to DO3 has been observed as a function of size. Some of the medium-sized droplets also show direct formation of ordered DO19 phase from the starting liquid. The evolution of disordered bcc structure in some of the droplets indicates disorder trapping during liquid to solid transformation. The microstructural evolution is analyzed on the basis of heat transfer mechanisms and continuous growth model in the solidifying droplets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous thin films of different Al–Fe compositions were produced by plasma/vapor quenching during pulsed laser deposition. The chosen compositions Al72Fe28, Al40Fe60, and Al18Fe82 correspond to Al5Fe2 and B2-ordered AlFe intermetallic compounds and α–Fe solid solution, respectively. The films contained fine clusters that increased with iron content. The sequences of phase evolution observed in the heating stage transmission electron microscopy studies of the pulsed laser ablation deposited films of Al72Fe28, Al40Fe60, and Al18Fe82 compositions showed evidence of composition partitioning during crystallization for films of all three compositions. This composition partitioning, in turn, resulted in the evolution of phases of compositions richer in Fe, as well as richer in Al, compared to the overall film composition in each case. The evidence of Fe-rich phases was the B2 phase in Al72Fe28 film, the L12- and DO3-ordered phases in Al40Fe60 film, and the hexagonal ε–Fe in the case of the Al18Fe82 film. On the other hand, the Al-rich phases were Al13Fe4 for both Al72Fe28 and Al40Fe60 films and DO3 and Al5Fe2 phases in the case of Al18Fe82 film. We believe that this tendency of composition partitioning during crystallization from amorphous phase is a consequence of the tendency of clustering of the Fe atoms in the amorphous phase during nucleation. The body-centered cubic phase has a nucleation advantage over other metastable phases for all three compositions. The amorphization of Al18Fe82 composition and the evolution of L12 and ε–Fe phases in the Al–Fe system were new observations of this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, there has been growing interest in Ca modified BaTiO3 structures due to their larger electro-optic coefficients for their use in optical storage of information over conventional BaTiO3 crystals. Barium Calcium Titanate (BCT) shows promising applications in advanced laser systems, optical interconnects and optical storage devices. BaTiO3 thin films of varied Ca (3 at. % - 15 at. %) doping were deposited using pulsed laser ablation (KrF excimer laser) technique over Pt/Si substrates. The stoichiometric and the compositional analysis were carried out using EDAX and SIMS. The dielectric studies were done at the frequency regime of 40 Hz to 100 kHz at different ambient temperatures from 200 K to 600 K. The BCT thin films exhibited diffuse phase transition, which was of a typical non lead relaxor behavior and had high dielectric constant and low dielectric loss. The phase transition for the different compositions of BCT thin films was near the room temperature, showing a marked departure from the bulk phase transition. The C - V and the hysteresis behavior confirmed the ferroelectric nature below the phase transition and paraelectric at the room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new type of bearing alloy containing ultrafine sized tin and silicon dispersions in aluminum was designed using laser surface alloying and laser remelting techniques. The microstructures of these non-equilibrium processed alloys were studied in detail using scanning and transmission electron microscopy. The microstructures revealed three distinct morphologies of tin particles namely elongated particles co-existing with silicon, globular particles, and very fine particles. Our detailed analyses using cellular growth theories showed that the formation of these globular tin particles was due to the pinching off of the tin rich liquid in the inter-cellular space by the growth of aluminum secondary dendrite arms. Evidence of fine recrystallized aluminum grains at the top layer due to constrained solidification was shown. Thermal analyses suggested that melting of the spherical shaped tin particles was controlled by the binary aluminum-tin eutectic reaction, whereas non-spherical tin particles melted via the tin-silicon eutectic reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BaTiO3 and Ba0.9Ca0.1TiO3 thin films were deposited on the p – type Si substrate by pulsed excimer laser ablation technique. The Capacitance – Voltage (C-V) measurement measured at 1 MHz exhibited a clockwise rotating hysteresis loop with a wide memory window for the Metal – Ferroelectric – Semiconductor (MFS) capacitor confirming the ferroelectric nature. The low frequency C – V measurements exhibited the response of the minority carriers in the inversion region while at 1 MHz the C – V is of a high frequency type with minimum capacitance in the inversion region. The interface states of both the MFS structures were calculated from the Castagne – Vaipaille method (High – low frequency C – V curve). Deep Level Transient Spectroscopy (DLTS) was used to analyze the interface traps and capture cross section present in the MFS capacitor. There were distinct peaks present in the DLTS spectrum and these peaks were attributed to the presence of the discrete interface states present at the semiconductor – ferroelectric interface. The distribution of calculated interface states were mapped with the silicon energy band gap for both the undoped and Ca doped BaTiO3 thin films using both the C – V and DLTS method. The interface states of the Ca doped BaTiO3 thin films were found to be higher than the pure BaTiO3 thin films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the formation ω phase in the remelted layers during laser cladding and remelting of quasicrystal forming Al65Cu23.3Fe11.7 alloy on pure aluminum. The ω phase is absent in the clad layers. In the remelted layer, the phase nucleates at the periphery of the primary icosahedral phase particles. A large number of ω phase particles forms enveloping the icosahedral phase growing into aluminum rich melt, which solidify as α-Al solid solution. On the other side it develops an interface with aluminum. A detailed transmission electron microscopic analysis shows that ω phase exhibits orientation relationship with icosahedral phase. The composition analysis performed using energy dispersive x-ray analyzer suggests that this phase has composition higher aluminum than the icosahedral phase. The analysis of the available phase diagram information indicates that the present results represent large departure from equilibrium conditions. A possible scenario of the evolution of the ω phase has been suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite coatings containing quasicrystalline (QC) phases in Al-Cu-Fe alloys were prepared by laser cladding using a mixture of the elemental powders. Two substrates, namely pure aluminum and an Al-Si alloy were used. The clad layers were remelted at different scanning velocities to alter the growth conditions of different phases. The process parameters were optimized to produce quasicrystalline phases. The evolution of the microstructure in the coating layer was characterized by detailed microstructural investigation. The results indicate presence of quasicrystals in the aluminum substrate. However, only approximant phase could be observed in the substrate of Al-Si alloys. It is shown that there is a significant transport of Si atoms from the substrate to the clad layer during the cladding and remelting process. The hardness profiles of coatings on aluminum substrate indicate a very high hardness. The coating on Al-Si alloy, on the other hand, is ductile and soft. The fracture toughness of the hard coating on aluminum was obtained by nano-indentation technique. The K1C value was found to be 1.33 MPa m1/2 which is typical of brittle materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of BaZrO3 (BZ) were grown using a pulsed laser deposition technique on platinum coated silicon substrates. Films showed a polycrystalline perovskite structure upon different annealing procedures of in-situ and ex-situ crystallization. The composition analyses were done using Energy dispersive X-ray analysis (EDAX) and Secondary ion mass spectrometry (SIMS). The SIMS analysis revealed that the ZrO2 formation at the right interface of substrate and the film leads the degradation of the device on the electrical properties in the case of ex-situ crystallized films. But the in-situ films exhibited no interfacial formation. The dielectric properties have been studied for the different temperatures in the frequency regime of 40 Hz to 100kHz. The response of the film to external ac stimuli was studied at different temperatures, and it showed that ac conductivity values in the limiting case are correspond to oxygen vacancy motion. The electrical modulus is fitted to a stretched exponential function and the results clearly indicate the presence of the non-Debye type of dielectric relaxation in these materials.