919 resultados para biological development
Resumo:
A pre-column derivatization method for the sensitive determination of amino acids and peptides using the tagging reagent 1,2-benzo-3,4dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS/MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEOC. BCEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. The derivatives showed an intense protonated molecular ion corresponding m/z (M + H)(+) under electrospray ionization (ESI) positive-ion mode with an exception being Tyr detected at negative mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 246.2 corresponding to the cleavage of C-O bond of BCEOC molecule. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3-4-fold molar reagent excess. Derivatives exhibit strong fluorescence and extracted detzvatization solution with n-hexane/ethyl acetate (10:1, v/v) allows for the direct injection with no significant interference from the major fluorescent reagent degradation by-products, such as 1,2-benzo-3,4-dihydrocarbazole-9-ethanol (BDC-OH) (a major by-product), mono- 1,2-benzo-3,4-dihydrocarbazole-9-ethyl carbonate (BCEOC-OH) and bis-(1,2-benzo-3,4-dihydrocarbazole-9-ethyl) carbonate (BCEOC)(2). In addition, the detection responses for BCEOC derivatives are compared to those obtained with previously synthesized 2-(9-carbazole)-ethyl chloroformate (CEOC) in our laboratory. The ratios AC(BCEOC)/AC(CEOC) = 2.05-6.51 for fluorescence responses are observed (here, AC is relative fluorescence response). Separation of the derivatized peptides and amino acids had been optimized on Hypersil BDS C-18 column. Detection limits were calculated from 1.0 pmol injection at a signal-to-noise ratio of 3, and were 6.3 (Lys)-177.6 (His) fmol. The mean interday accuracy ranged from 92 to 106% for fluorescence detection with mean %CV < 7.5. The mean interday precision for all standards was < 10% of the expected concentration. Excellent linear responses were observed with coefficients of > 0.9999. Good compositional data could be obtained from the analysis of derivatized protein hydrolysates containing as little as 50.5 ng of sample. Therefore, the facile BCEOC derivatization coupled with mass spectrometry allowed the development of a highly sensitive and specific method for the quantitative analysis of trace levels of amino acids and peptides from biological and natural environmental samples. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This thesis describes work carried out on the design of new routes to a range of bisindolylmaleimide and indolo[2,3-a]carbazole analogs, and investigation of their potential as successful anti-cancer agents. Following initial investigation of classical routes to indolo[2,3-a]pyrrolo[3,4-c]carbazole aglycons, a new strategy employing base-mediated condensation of thiourea and guanidine with a bisindolyl β-ketoester intermediate afforded novel 5,6-bisindolylpyrimidin-4(3H)-ones in moderate yields. Chemical diversity within this H-bonding scaffold was then studied by substitution with a panel of biologically relevant electrophiles, and by reductive desulfurisation. Optimisation of difficult heterogeneous literature conditions for oxidative desulfurisation of thiouracils was also accomplished, enabling a mild route to a novel 5,6-bisindolyluracil pharmacophore to be developed within this work. The oxidative cyclisation of selected acyclic bisindolyl systems to form a new planar class of indolo[2,3-a]pyrimido[5,4-c]carbazoles was also investigated. Successful conditions for this transformation, as well as the limitations currently prevailing for this approach are discussed. Synthesis of 3,4-bisindolyl-5-aminopyrazole as a potential isostere of bisindolylmaleimide agents was encountered, along with a comprehensive derivatisation study, in order to probe the chemical space for potential protein backbone H-bonding interactions. Synthesis of a related 3,4-arylindolyl-5-aminopyrazole series was also undertaken, based on identification of potent kinase inhibition within a closely related heterocyclic template. Following synthesis of approximately 50 novel compounds with a diversity of H-bonding enzyme-interacting potential within these classes, biological studies confirmed that significant topo II inhibition was present for 9 lead compounds, in previously unseen pyrazolo[1,5-a]pyrimidine, indolo[2,3-c]carbazole and branched S,N-disubstituted thiouracil derivative series. NCI-60 cancer cell line growth inhibition data for 6 representative compounds also revealed interesting selectivity differences between each compound class, while a new pyrimido[5,4-c]carbazole agent strongly inhibited cancer cell division at 10 µM, with appreciable cytotoxic activity observed across several tumour types.
Resumo:
This thesis focuses on the synthesis and analysis of novel chloride based platinum complexes derived from iminophosphine and phosphinoamide ligands, along with studies on their reactivity towards substitution and oxidation reactions. Also explored here are the potential applications of these complexes for biological and luminescent purposes. Chapter one provides an extensive overview of platinum coordination chemistry with examples of various mixed donor ligands along with the history of platinum anticancer therapy. It also looks at metals in medicine, both for biological functions as well as for therapeutic purposes and gives a background to some other applications for platinum complexes. Chapter two outlines the design and synthetic strategies employed for the development of novel platinum (II) chloride complexes from iminophosphine and phosphinoamide ligands. Also reported is the cyclometallation of these complexes to form stable tridentate mixed donor platinum (II) compounds. In Chapter three the development of a direct method for displacing a chloride from a platinum metal centre with a desired phosphine is reported. Numerous methods for successful oxidation of the platinum (II) complexes will also be explored, leading to novel platinum (IV) complexes being reported here also. The importance of stabilisation of the displaced anion, chloride, by the solvent system will also be discussed in this chapter. Chapter four investigates the reactivity of the platinum (II) complexes towards two different biomolecules to form novel platinum bio-adducts. The potential application of the platinum (II) cyclometallates as chemotherapeutics will also be explored here using in-vitro cancer cell testing. Finally, luminescence studies are also reported here for the ligands and platinum complexes reported in chapter two and three to investigate potential applications in this field also. Chapter five provides a final conclusion and an overall summary of the entire project as well as identifying key areas for future work.
Resumo:
Modern neuroscience relies heavily on sophisticated tools that allow us to visualize and manipulate cells with precise spatial and temporal control. Transgenic mouse models, for example, can be used to manipulate cellular activity in order to draw conclusions about the molecular events responsible for the development, maintenance and refinement of healthy and/or diseased neuronal circuits. Although it is fairly well established that circuits respond to activity-dependent competition between neurons, we have yet to understand either the mechanisms underlying these events or the higher-order plasticity that synchronizes entire circuits. In this thesis we aimed to develop and characterize transgenic mouse models that can be used to directly address these outstanding biological questions in different ways. We present SLICK-H, a Cre-expressing mouse line that can achieve drug-inducible, widespread, neuron-specific manipulations in vivo. This model is a clear improvement over existing models because of its particularly strong, widespread, and even distribution pattern that can be tightly controlled in the absence of drug induction. We also present SLICK-V::Ptox, a mouse line that, through expression of the tetanus toxin light chain, allows long-term inhibition of neurotransmission in a small subset (<1%) of fluorescently labeled pyramidal cells. This model, which can be used to study how a silenced cell performs in a wildtype environment, greatly facilitates the in vivo study of activity-dependent competition in the mammalian brain. As an initial application we used this model to show that tetanus toxin-expressing CA1 neurons experience a 15% - 19% decrease in apical dendritic spine density. Finally, we also describe the attempt to create additional Cre-driven mouse lines that would allow conditional alteration of neuronal activity either by hyperpolarization or inhibition of neurotransmission. Overall, the models characterized in this thesis expand upon the wealth of tools available that aim to dissect neuronal circuitry by genetically manipulating neurons in vivo.
Resumo:
RNA editing is a biological phenomena that alters nascent RNA transcripts by insertion, deletion and/or substitution of one or a few nucleotides. It is ubiquitous in all kingdoms of life and in viruses. The predominant editing event in organisms with a developed central nervous system is Adenosine to Inosine deamination. Inosine is recognized as Guanosine by the translational machinery and reverse-transcriptase. In primates, RNA editing occurs frequently in transcripts from repetitive regions of the genome. In humans, more than 500,000 editing instances have been identified, by applying computational pipelines on available ESTs and high-throughput sequencing data, and by using chemical methods. However, the functions of only a small number of cases have been studied thoroughly. RNA editing instances have been found to have roles in peptide variants synthesis by non-synonymous codon substitutions, transcript variants by alterations in splicing sites and gene silencing by miRNAs sequence modifications. We established the Database of RNA EDiting (DARNED) to accommo-date the reference genomic coordinates of substitution editing in human, mouse and fly transcripts from published literatures, with additional information on edited genomic coordinates collected from various databases e.g. UCSC, NCBI. DARNED contains mostly Adenosine to Inosine editing and allows searches based on genomic region, gene ID, and user provided sequence. The Database is accessible at http://darned.ucc.ie RNA editing instances in coding region are likely to result in recoding in protein synthesis. This encouraged me to focus my research on the occurrences of RNA editing specific CDS and non-Alu exonic regions. By applying various filters on discrepancies between available ESTs and their corresponding reference genomic sequences, putative RNA editing candidates were identified. High-throughput sequencing was used to validate these candidates. All predicted coordinates appeared to be either SNPs or unedited.
Resumo:
The application of biological effect monitoring for the detection of environmental chemical exposure in domestic animals is still in its infancy. This study investigated blood sample preparations in vitro for their use in biological effect monitoring. When peripheral blood mononuclear cells (PBMCs), isolated following the collection of multiple blood samples from sheep in the field, were cryopreserved and subsequently cultured for 24 hours a reduction in cell viability (<80%) was attributed to delays in the processing following collection. Alternative blood sample preparations using rat and sheep blood demonstrated that 3 to 5 hour incubations can be undertaken without significant alterations in the viability of the lymphocytes; however, a substantial reduction in viability was observed after 24 hours in frozen blood. Detectable levels of early and late apoptosis as well as increased levels of ROS were detectable in frozen sheep blood samples. The addition of ascorbic acid partly reversed this effect and reduced the loss in cell viability. The response of the rat and sheep blood sample preparations to genotoxic compounds ex vivo showed that EMS caused comparable dose-dependent genotoxic effects in all sample preparations (fresh and frozen) as detected by the Comet assay. In contrast, the effects of CdCl2 were dependent on the duration of exposure as well as the sample preparation. The analysis of leukocyte subsets in frozen sheep blood showed no alterations in the percentages of T and B lymphocytes but led to a major decrease in the percentage of granulocytes compared to those in the fresh samples. The percentages of IFN-γ and IL-4 but not IL-6 positive cells were comparable between fresh and frozen sheep blood after 4 hour stimulation with phorbol 12-myrisate 13-acetate and ionomycin (PMA+I). These results show that frozen blood gives comparable responses to fresh blood samples in the toxicological and immune assays used.
Resumo:
This thesis work covered the fabrication and characterisation of impedance sensors for biological applications aiming in particular to the cytotoxicity monitoring of cultured cells exposed to different kind of chemical compounds and drugs and to the identification of different types of biological tissue (fat, muscles, nerves) using a sensor fabricated on the tip of a commercially available needle during peripheral nerve block procedures. Gold impedance electrodes have been successfully fabricated for impedance measurement on cells cultured on the electrode surface which was modified with the fabrication of gold nanopillars. These nanostructures have a height of 60nm or 100nm and they have highly ordered layout as they are fabricated through the e-beam technique. The fabrication of the threedimensional structures on the interdigitated electrodes was supposed to improve the sensitivity of the ECIS (electric cell-substrate impedance sensing) measurement while monitoring the cytotoxicity effects of two different drugs (Antrodia Camphorata extract and Nicotine) on three different cell lines (HeLa, A549 and BALBc 3T3) cultured on the impedance devices and change the morphology of the cells growing on the nanostructured electrodes. The fabrication of the nanostructures was achieved combining techniques like UV lithography, metal lift-off, evaporation and e-beam lithography techniques. The electrodes were packaged using a pressure sensitive, medical grade adhesive double-sided tape. The electrodes were then characterised with the aid of AFM and SEM imaging which confirmed the success of the fabrication processes showing the nanopillars fabricated with the right layout and dimensions figures. The introduction of nanopillars on the impedance electrodes, however, did not improve much the sensitivity of the assay with the exception of tests carried out with Nicotine. HeLa and A549 cells appeared to grow in a different way on the two surfaces, while no differences where noticed on the BALBc 3T3 cells. Impedance measurements obtained with the dead cells on the negative control electrodes or the test electrodes with the drugs can be compared to those done on the electrodes containing just media in the tested volume (as no cells are attached and cover the electrode surface). The impedance figures recorded using these electrodes were between 1.5kΩ and 2.5 kΩ, while the figures recorded on confluent cell layers range between 4kΩ and 5.5kΩ with peaks of almost 7 kΩ if there was more than one layer of cells growing on each other. There was then a very clear separation between the values of living cell compared to the dead ones which was almost 2.5 - 3kΩ. In this way it was very easy to determine whether the drugs affected the cells normal life cycle on not. However, little or no differences were noticed in the impedance analysis carried out on the two different kinds of electrodes using cultured cells. An increase of sensitivity was noticed only in a couple of experiments carried out on A549 cells growing on the nanostructured electrodes and exposed to different concentration of a solution containing Nicotine. More experiments to achieve a higher number of statistical evidences will be needed to prove these findings with an absolute confidence. The smart needle project aimed to reduce the limitations of the Electrical Nerve Stimulation (ENS) and the Ultra Sound Guided peripheral nerve block techniques giving the clinicians an additional tool for performing correctly the peripheral nerve block. Bioimpedance, as measured at the needle tip, provides additional information on needle tip location, thereby facilitating detection of intraneural needle placement. Using the needle as a precision instrument and guidance tool may provide additional information as to needle tip location and enhance safety in regional anaesthesia. In the time analysis, with the frequency fixed at 10kHz and the samples kept at 12°C, the approximate range for muscle bioimpedance was 203 – 616 Ω, the approximate bioimpedance range for fat was 5.02 - 17.8 kΩ and the approximate range for connective tissue was 790 Ω – 1.55 kΩ. While when the samples were heated at 37°C and measured again at 10kHz, the approximate bioimpedance range for muscle was 100-175Ω. The approximate bioimpedance range of fat was 627 Ω - 3.2 kΩ and the range for connective tissue was 221-540Ω. In the experiments done on the fresh slaughtered lamb carcass, replicating a scenario close to the real application, the impedance values recorded for fat were around 17 kΩ, for muscle and lean tissue around 1.3 kΩ while the nervous structures had an impedance value of 2.9 kΩ. With the data collected during this research, it was possible to conclude that measurements of bioimpedance at the needle tip location can give valuable information to the clinicians performing a peripheral nerve block procedure as the separation (in terms of impedance figures) was very marked between the different type of tissues. It is then feasible to use an impedance electrode fabricated on the needle tip to differentiate several tissues from the nerve tissue. Currently, several different methods are being studied to fabricate an impedance electrode on the surface of a commercially available needle used for the peripheral nerve block procedure.
Resumo:
Spatial cognition and memory are critical cognitive skills underlying foraging behaviors for all primates. While the emergence of these skills has been the focus of much research on human children, little is known about ontogenetic patterns shaping spatial cognition in other species. Comparative developmental studies of nonhuman apes can illuminate which aspects of human spatial development are shared with other primates, versus which aspects are unique to our lineage. Here we present three studies examining spatial memory development in our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (P. paniscus). We first compared memory in a naturalistic foraging task where apes had to recall the location of resources hidden in a large outdoor enclosure with a variety of landmarks (Studies 1 and 2). We then compared older apes using a matched memory choice paradigm (Study 3). We found that chimpanzees exhibited more accurate spatial memory than bonobos across contexts, supporting predictions from these species' different feeding ecologies. Furthermore, chimpanzees - but not bonobos - showed developmental improvements in spatial memory, indicating that bonobos exhibit cognitive paedomorphism (delays in developmental timing) in their spatial abilities relative to chimpanzees. Together, these results indicate that the development of spatial memory may differ even between closely related species. Moreover, changes in the spatial domain can emerge during nonhuman ape ontogeny, much like some changes seen in human children.
Resumo:
A significant challenge in environmental toxicology is that many genetic and genomic tools available in laboratory models are not developed for commonly used environmental models. The Atlantic killifish (Fundulus heteroclitus) is one of the most studied teleost environmental models, yet few genetic or genomic tools have been developed for use in this species. The advancement of genetic and evolutionary toxicology will require that many of the tools developed in laboratory models be transferred into species more applicable to environmental toxicology. Antisense morpholino oligonucleotide (MO) gene knockdown technology has been widely utilized to study development in zebrafish and has been proven to be a powerful tool in toxicological investigations through direct manipulation of molecular pathways. To expand the utility of killifish as an environmental model, MO gene knockdown technology was adapted for use in Fundulus. Morpholino microinjection methods were altered to overcome the significant differences between these two species. Morpholino efficacy and functional duration were evaluated with molecular and phenotypic methods. A cytochrome P450-1A (CYP1A) MO was used to confirm effectiveness of the methodology. For CYP1A MO-injected embryos, a 70% reduction in CYP1A activity, a 86% reduction in total CYP1A protein, a significant increase in beta-naphthoflavone-induced teratogenicity, and estimates of functional duration (50% reduction in activity 10 dpf, and 86% reduction in total protein 12 dpf) conclusively demonstrated that MO technologies can be used effectively in killifish and will likely be just as informative as they have been in zebrafish.
Resumo:
A 64-page catalogue of material in the MBA Archive Collection containing details of documents, records, and personal papers relating to the history and development of the Marine Biological Association.