939 resultados para bio-implants
Resumo:
The design of a non-viral gene delivery vehicle capable of delivering and releasing a functional nucleic acid cargo intracellularly remains a formidable challenge. For systemic gene therapy to be successful a delivery vehicle is required that protects the nucleic acid cargo from enzymatic degradation, extravasates from the vasculature, traverses the cell membrane, disrupts the endosomal vesicles and unloads the cargo at its destination site, namely the nucleus for the purposes of gene delivery. This manuscript reports the extensive investigation of a novel amphipathic peptide composed of repeating RALA units capable of overcoming the biological barriers to gene delivery both in vitro and in vivo. Our data demonstrates the spontaneous self-assembly of cationic DNA-loaded nanoparticles when the peptide is complexed with pDNA. Nanoparticles were < 100 nm, were stable in the presence of serum and were fusogenic in nature, with increased peptide α-helicity at a lower pH. Nanoparticles proved to be non-cytotoxic, readily traversed the plasma membrane of both cancer and fibroblast cell lines and elicited reporter-gene expression following intravenous delivery in vivo. The results of this study indicate that RALA presents an exciting delivery platform for the systemic delivery of nucleic acid therapeutics.
Resumo:
Bioresorbable polymers such as PLA have an important role to play in the development of temporary implantable medical devices with significant benefits over traditional therapies. However, development of new devices is hindered by high manufacturing costs associated with difficulties in processing the material. A major problem is the lack of insight on material degradation during processing. In this work, a method of quantifying degradation of PLA using IR spectroscopy coupled with computational chemistry and chemometric modeling is examined. It is shown that the method can predict the quantity of degradation products in solid-state samples with reasonably good accuracy, indicating the potential to adapt the method to developing an on-line sensor for monitoring PLA degradation in real-time during processing.
Resumo:
Hip replacement surgery is amongst the most common orthopaedic operations performed in the UK. Aseptic loosening is responsible for 40% of hip revision procedures. Aseptic loosening is a result of cement mantle fatigue. The aim of the current study is to analyse the effect of nanoscale Graphene Oxide (GO) on the mechanical properties of orthopaedic bone cement. Study Design A experimental thermal and mechanical analysis was conducted in a laboratory set up conforming to international standards for bone cement testing according to ISO 5583. Testing was performed on control cement samples of Colacryl bone cement, and additional samples reinforced with variable wt% of Graphene Oxide containing composites – 0.1%, 0.25%, 0.5% and 1.0% GO loading. Pilot Data Porosity demonstrated a linear relationship with increasing wt% loading compared to control (p<0.001). Thermal characterisation demonstrated maximal temperature during polymerization, and generated exotherm were inversely proportional to w%t loading (p<0.05) Fatigue strength performed on the control and 0.1 and 0.25%wt loadings of GO demonstrate increased average cycles to failure compared to control specimens. A right shift of the Weibull curve was demonstrated for both wt% available currently. Logistic regression analysis for failure demonstrated significant increases in number of cycles to failure for both specimens compared to a control (p<0.001). Forward Plan Early results convey positive benefits at low wt% loadings of GO containing bone cement. Study completion and further analysis is required in order to elude to the optimum w%t of GO which conveys the greatest mechanical advantage.
Resumo:
Pt and PtSn catalysts were studied for n-butanol electro-oxidation at various temperatures. PtSn showed a higher activity towards butanol electro-oxidation compared to Pt in acidic media. The onset potential for n-butanol oxidation on PtSn is ~520 mV lower than that found on Pt, and significantly lower activation energy was found for PtSn compared with that for Pt.
Resumo:
The use of biomass as a source of fuel is on the sharp increase. In parallel with this expansion, new chemical processes and technologies are required to improve efficiency, sustainability, and profitability.
Biocatalytic and chemocatalytic methods can be combined to affect the conversion of bio-alcohols, and convert them to valuable chemical targets in an atom efficient and environmentally benign manor. Fermentation offers a useful first step in biomass conversion, as whole cell biocatalysts can provide sustained activity when fed with crude biomass. Coupling this with homogeneous and/or heterogeneous catalysis enables the preparation of a diverse product range. The transition between biocatalytic and chemocatalytic steps can be assisted by utilising ionic liquids.
Ionic liquids have potential roles in biorefineries that generate alcohols; as an extractant, reaction medium, and catalytic reagent. Underpinning the potential of ionic liquids in this area is: 1. the ability of ionic liquids to solubilize polyols and alcohols; 2. the facility to functionalise ionic liquids and tune properties; 3. the low volatility of ionic liquids.
The FP7 project GRAIL will be highlighted; this project focusses on the utilisation of glycerol formed as a by-product in biodiesel synthesis.
Resumo:
Purpose The aim of this study is to improve the drug release properties of antimicrobial agents from hydrophobic biomaterials using using an ion pairing strategy. In so doing antimicrobial agents may be eluted and maintained over a sufficient time period thereby preventing bacterial colonisation and subsequent biofilm formation on medical devices. Methods The model antimicrobial agent was chlorhexidine and the selected fatty acid counter ions were capric acid, myristic acid and stearic acid. The polymethyl methacrylate films were loaded with 2% of fatty acid:antimicrobial agent at the following molar ratios; 0.5:1M, 1:1M and 2:1M and thermally polymerized using azobisisobutyronitrile initiator. Drug release experiments were subsequently performed over a 3-month period and the mass of drug released under sink conditions (pH 7.0, 37oC) quantified using a validated HPLC-UV method. Results In all platforms, a burst of chlorhexidine release was observed over the initial 24-hour period. Similar release kinetics were observed between the formulations during the initial 28 days. However, as time progressed, the chlorhexidine baseline plateaued after 56 days whereas formulations containing the counterions appeared to continuously elute linearly with time. As can be observed in figure 1, the rank order of total chlorhexidine release in the presence of 0.5M fatty acid was myristic acid (40%) > capric acid (35%) > stearic acid (30%)> chlorhexidine baseline (15%). Conclusion The incorporation of fatty acids within the formulation significantly improved chlorhexidine solubility within both the monomer and the polymer and enhanced the drug release kinetics over the period of study. This is attributed to the greater diffusivity of chlorhexidine through PMMA in the presence of fatty acids. In th absence of fatty acids, chlorhexidine release was facilitated by dissolution of surface associated drug particles. This study has illustrated the ability of fatty acids to modulate chlorhexidine release from a model biomaterial through enhanced diffusivity. This strategy may prove advantageous for improved medical devices with enhanced resistance to infection.
Resumo:
Combining whole cell biocatalysis and chemocatalysis in a single reaction sequence avoids unnecessary separations, and the associated waste and energy consumption. Bacterial fermentation has been employed to convert waste glycerol from biodiesel production into 1,3-propanediol. This 1,3-propanediol can be extracted selectively from the aqueous fermentation broth using ionic liquids. 1,3-propanediol in ionic liquid solution was converted to propanal by hydrogen transfer initiated dehydration (HTID) catalysed by a Cp*IrCl2(NHC) (Cp* = pentamethylcyclopentadienyl; NHC = carbene ligand) complex. The use of an ionic liquid solvent enabled the reaction to be performed under reduced pressure, facilitating the isolation of the product, and improving the reaction selectivity. The Ir(III) catalyst in ionic liquid was found to be highly recyclable.