963 resultados para beta adrenergic stimulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated whether stimulation of the pyramidal tract (PT) could reset the phase of 15-30 Hz beta oscillations observed in the macaque motor cortex. We recorded local field potentials (LFPs) and multiple single-unit activity from two conscious macaque monkeys performing a precision grip task. EMG activity was also recorded from the second animal. Single PT stimuli were delivered during the hold period of the task, when oscillations in the LFP were most prominent. Stimulus-triggered averaging of the LFP showed a phase-locked oscillatory response to PT stimulation. Frequency domain analysis revealed two components within the response: a 15-30 Hz component, which represented resetting of on-going beta rhythms, and a lower frequency 10 Hz response. Only the higher frequency could be observed in the EMG activity, at stronger stimulus intensities than were required for resetting the cortical rhythm. Stimulation of the PT during movement elicited a greatly reduced oscillatory response. Analysis of single-unit discharge confirmed that PT stimulation was capable of resetting periodic activity in motor cortex. The firing patterns of pyramidal tract neurones (PTNs) and unidentified neurones exhibited successive cycles of suppression and facilitation, time locked to the stimulus. We conclude that PTN activity directly influences the generation of the 15-30 Hz rhythm. These PTNs facilitate EMG activity in upper limb muscles, contributing to corticomuscular coherence at this same frequency. Since the earliest oscillatory effect observed following stimulation was a suppression of firing, we speculate that inhibitory feedback may be the key mechanism generating such oscillations in the motor cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Very low doses (0.00001 mg/kg) of the alpha-2 adrenergic antagonist, yohimbine, improved working memory performance in a subset of aged monkeys. Improvement appeared to result from increased norepinephrine (NE) release onto postsynaptic alpha-2 adrenoceptors, as the response was blocked by the ''postsynaptic'' alpha-2 antagonist, SKF104078. Cognitive-enhancing effects of low dose yohimbine treatment may depend on aged animals retaining an intact, endogenous NE system. In contrast to yohimbine, the alpha-2 agonist, clonidine, has improved working memory in air aged animals examined. In the present study, clonidine's beneficial effects were also blocked by the postsynaptic antagonists SKF104078 and SKF104856, suggesting that clonidine acts by directly stimulating postsynaptic alpha-2 adrenoceptors. Beneficial doses of clonidine (0.01 mg/kg) and yohimbine (0.00001 mg/kg) were combined to see if they would produce additive effects on memory enhancement. This strategy was successful in young monkeys with intact NE systems but was not effective in the aged monkeys. These findings demonstrate that drugs that indirectly stimulate postsynaptic alpha-2 receptors by increasing NE release are not as reliable in aged monkeys as directly acting agonists that can replace NE at postsynaptic alpha-2 receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipopolysaccharide and beta-1,3-glucan-binding protein (LGBP) play a crucial role in the innate immune response of invertebrates as a pattern recognition protein (PRP). The scallop LGBP gene was obtained from Chlamys farreri challenged by Vibrio anguillarum by randomly sequencing cDNA clones from a whole body cDNA library, and by fully sequencing a clone with homology to known LGBP genes. The scallop LGBP consisted of 1876 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, encoding a polypeptide of 440 amino acids with the estimated molecular mass of 47.16 kDa and a predicted isoelectric point of 5.095. The deduced amino acid sequence showed a high similarity to that of invertebrate recognition proteins from blue shrimp, black tiger shrimp, mosquito, freshwater crayfish, earthworms, and sea urchins, with conserved features including a potential polysaccharide-binding motif, a glucanase motif, and N-glycosylation sites. The temporal expression of LGBP genes in healthy and V. anguillarum-challenged C farreri scallop, measured by real-time semiquantitative reverse transcription polymerase chain reaction (PCR), showed that expression was up-regulated initially, followed by recovery as the stimulation cleared. Results indicated that scallop LGBP was a constitutive and inducible acute-phase protein that could play a critical role in scallop-pathogen interaction. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To gain an insight into the function of shrimp lymphoid organ at protein level, we analyzed the proteome of lymphoid organ in healthy Chinese shrimp Fenneropenaeus chinensis (F. chinensis) through two-dimensional gel electrophoresis (2-DE) based proteomic approach. A total of 95 spots representing 75 protein entries were identified by liquid chromatography tandem mass spectrometry (LC-MS/MS) with both online and in-house database. According to Gene Ontology (GO) annotation of biological process, the identified proteins were classified into 13 categories. Among them, approximately 36% of proteins related to cytoskeleton are noticeable. Then, a comparative proteomic approach was employed to investigate the differentially expressed proteins in lymphoid organ of Vibrio anguillarum-challenged F. chinensis. At 24 h post-injection (hpi), 17 differentially expressed protein spots were successfully identified, including 4 up-regulated protein spots (represent 4 proteins: cathepsin L protein similar to squid CG16901-PC, protein kinase C and protein similar to T-complex Chaperonin 5 CG8439-PA), and 13 down-regulated protein spots (represent 9 proteins: actin, beta-actin, cytoplasmic actin CyII, alpha tubulin, beta tubulin, protein similar to proteasome delta, vacuolar ATP synthase subunit B, elongation factor 2, carboxypeptidase B). These data may help us to understand the function of lymphoid organ and the molecular immune mechanism of shrimp responsive to pathogen infection. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nicotinic acid is one of the most effective agents for both lowering triglycerides and raising HDL. However, the side effect of cutaneous flushing severely limits patient compliance. As nicotinic acid stimulates the GPCR GPR109A and Gi/Go proteins, here we dissected the roles of G proteins and the adaptor proteins, beta-arrestins, in nicotinic acid-induced signaling and physiological responses. In a human cell line-based signaling assay, nicotinic acid stimulation led to pertussis toxin-sensitive lowering of cAMP, recruitment of beta-arrestins to the cell membrane, an activating conformational change in beta-arrestin, and beta-arrestin-dependent signaling to ERK MAPK. In addition, we found that nicotinic acid promoted the binding of beta-arrestin1 to activated cytosolic phospholipase A2 as well as beta-arrestin1-dependent activation of cytosolic phospholipase A2 and release of arachidonate, the precursor of prostaglandin D2 and the vasodilator responsible for the flushing response. Moreover, beta-arrestin1-null mice displayed reduced cutaneous flushing in response to nicotinic acid, although the improvement in serum free fatty acid levels was similar to that observed in wild-type mice. These data suggest that the adverse side effect of cutaneous flushing is mediated by beta-arrestin1, but lowering of serum free fatty acid levels is not. Furthermore, G protein-biased ligands that activate GPR109A in a beta-arrestin-independent fashion may represent an improved therapeutic option for the treatment of dyslipidemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reinforcing and psychomotor effects of morphine involve opiate stimulation of the dopaminergic system via activation of mu-opioid receptors (muOR). Both mu-opioid and dopamine receptors are members of the G-protein-coupled receptor (GPCR) family of proteins. GPCRs are known to undergo desensitization involving phosphorylation of the receptor and the subsequent binding of beta(arrestins), which prevents further receptor-G-protein coupling. Mice lacking beta(arrestin)-2 (beta(arr2)) display enhanced sensitivity to morphine in tests of pain perception attributable to impaired desensitization of muOR. However, whether abrogating muOR desensitization affects the reinforcing and psychomotor properties of morphine has remained unexplored. In the present study, we examined this question by assessing the effects of morphine and cocaine on locomotor activity, behavioral sensitization, conditioned place preference, and striatal dopamine release in beta(arr2) knock-out (beta(arr2)-KO) mice and their wild-type (WT) controls. Cocaine treatment resulted in very similar neurochemical and behavioral responses between the genotypes. However, in the beta(arr2)-KO mice, morphine induced more pronounced increases in striatal extracellular dopamine than in WT mice. Moreover, the rewarding properties of morphine in the conditioned place preference test were greater in the beta(arr2)-KO mice when compared with the WT mice. Thus, beta(arr2) appears to play a more important role in the dopaminergic effects mediated by morphine than those induced by cocaine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stimulation of a mutant angiotensin type 1A receptor (DRY/AAY) with angiotensin II (Ang II) or of a wild-type receptor with an Ang II analog ([sarcosine1,Ile4,Ile8]Ang II) fails to activate classical heterotrimeric G protein signaling but does lead to recruitment of beta-arrestin 2-GFP and activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) (maximum stimulation approximately 50% of wild type). This G protein-independent activation of mitogen-activated protein kinase is abolished by depletion of cellular beta-arrestin 2 but is unaffected by the PKC inhibitor Ro-31-8425. In parallel, stimulation of the wild-type angiotensin type 1A receptor with Ang II robustly stimulates ERK1/2 activation with approximately 60% of the response blocked by the PKC inhibitor (G protein dependent) and the rest of the response blocked by depletion of cellular beta-arrestin 2 by small interfering RNA (beta-arrestin dependent). These findings imply the existence of independent G protein- and beta-arrestin 2-mediated pathways leading to ERK1/2 activation and the existence of distinct "active" conformations of a seven-membrane-spanning receptor coupled to each.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lymphocyte chemotaxis is a complex process by which cells move within tissues and across barriers such as vascular endothelium and is usually stimulated by chemokines such as stromal cell-derived factor-1 (CXCL12) acting via G protein-coupled receptors. Because members of this receptor family are regulated ("desensitized") by G protein-coupled receptor kinase (GRK)-mediated receptor phosphorylation and beta-arrestin binding, we examined signaling and chemotactic responses in splenocytes derived from knockout mice deficient in various beta-arrestins and GRKs, with the expectation that these responses might be enhanced. Knockouts of beta-arrestin2, GRK5, and GRK6 were examined because all three proteins are expressed at high levels in purified mouse CD3+ T and B220+ B splenocytes. CXCL12 stimulation of membrane GTPase activity was unaffected in splenocytes derived from GRK5-deficient mice but was increased in splenocytes from the beta-arrestin2- and GRK6-deficient animals. Surprisingly, however, both T and B cells from beta-arrestin2-deficient animals and T cells from GRK6-deficient animals were strikingly impaired in their ability to respond to CXCL12 both in transwell migration assays and in transendothelial migration assays. Chemotactic responses of lymphocytes from GRK5-deficient mice were unaffected. Thus, these results indicate that beta-arrestin2 and GRK6 actually play positive regulatory roles in mediating the chemotactic responses of T and B lymphocytes to CXCL12.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using both confocal immunofluorescence microscopy and biochemical approaches, we have examined the role of beta-arrestins in the activation and targeting of extracellular signal-regulated kinase 2 (ERK2) following stimulation of angiotensin II type 1a receptors (AT1aR). In HEK-293 cells expressing hemagglutinin-tagged AT1aR, angiotensin stimulation triggered beta-arrestin-2 binding to the receptor and internalization of AT1aR-beta-arrestin complexes. Using red fluorescent protein-tagged ERK2 to track the subcellular distribution of ERK2, we found that angiotensin treatment caused the redistribution of activated ERK2 into endosomal vesicles that also contained AT1aR-beta-arrestin complexes. This targeting of ERK2 reflects the formation of multiprotein complexes containing AT1aR, beta-arrestin-2, and the component kinases of the ERK cascade, cRaf-1, MEK1, and ERK2. Myc-tagged cRaf-1, MEK1, and green fluorescent protein-tagged ERK2 coprecipitated with Flag-tagged beta-arrestin-2 from transfected COS-7 cells. Coprecipitation of cRaf-1 with beta-arrestin-2 was independent of MEK1 and ERK2, whereas the coprecipitation of MEK1 and ERK2 with beta-arrestin-2 was significantly enhanced in the presence of overexpressed cRaf-1, suggesting that binding of cRaf-1 to beta-arrestin facilitates the assembly of a cRaf-1, MEK1, ERK2 complex. The phosphorylation of ERK2 in beta-arrestin complexes was markedly enhanced by coexpression of cRaf-1, and this effect is blocked by expression of a catalytically inactive dominant inhibitory mutant of MEK1. Stimulation with angiotensin increased the binding of both cRaf-1 and ERK2 to beta-arrestin-2, and the association of beta-arrestin-2, cRaf-1, and ERK2 with AT1aR. These data suggest that beta-arrestins function both as scaffolds to enhance cRaf-1 and MEK-dependent activation of ERK2, and as targeting proteins that direct activated ERK to specific subcellular locations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two widely coexpressed isoforms of beta-arrestin (termed beta arrestin 1 and 2) are highly similar in amino acid sequence. The beta-arrestins bind phosphorylated heptahelical receptors to desensitize and target them to clathrin-coated pits for endocytosis. To better define differences in the roles of beta-arrestin 1 and 2, we prepared mouse embryonic fibroblasts from knockout mice that lack one of the beta-arrestins (beta arr1-KO and beta arr2-KO) or both (beta arr1/2-KO), as well as their wild-type (WT) littermate controls. These cells were analyzed for their ability to support desensitization and sequestration of the beta(2)-adrenergic receptor (beta(2)-AR) and the angiotensin II type 1A receptor (AT(1A)-R). Both beta arr1-KO and beta arr2-KO cells showed similar impairment in agonist-stimulated beta(2)-AR and AT(1A)-R desensitization, when compared with their WT control cells, and the beta arr1/2-KO cells were even further impaired. Sequestration of the beta(2)-AR in the beta arr2-KO cells was compromised significantly (87% reduction), whereas in the beta arr1-KO cells it was not. Agonist-stimulated internalization of the AT(1A)-R was only slightly reduced in the beta arr1-KO but was unaffected in the beta arr2-KO cells. In the beta arr1/2-KO cells, the sequestration of both receptors was dramatically reduced. Comparison of the ability of the two beta-arrestins to sequester the beta(2)-AR revealed beta-arrestin 2 to be 100-fold more potent than beta-arrestin 1. Down-regulation of the beta(2)-AR was also prevented in the beta arr1/2-KO cells, whereas no change was observed in the single knockout cells. These findings suggest that sequestration of various heptahelical receptors is regulated differently by the two beta-arrestins, whereas both isoforms are capable of supporting receptor desensitization and down-regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several G-protein coupled receptors, such as the beta1-adrenergic receptor (beta1-AR), contain polyproline motifs within their intracellular domains. Such motifs in other proteins are known to mediate protein-protein interactions such as with Src homology (SH)3 domains. Accordingly, we used the proline-rich third intracellular loop of the beta1-AR either as a glutathione S-transferase fusion protein in biochemical "pull-down" assays or as bait in the yeast two-hybrid system to search for interacting proteins. Both approaches identified SH3p4/p8/p13 (also referred to as endophilin 1/2/3), a SH3 domain-containing protein family, as binding partners for the beta1-AR. In vitro and in human embryonic kidney (HEK) 293 cells, SH3p4 specifically binds to the third intracellular loop of the beta1-AR but not to that of the beta2-AR. Moreover, this interaction is mediated by the C-terminal SH3 domain of SH3p4. Functionally, overexpression of SH3p4 promotes agonist-induced internalization and modestly decreases the Gs coupling efficacy of beta1-ARs in HEK293 cells while having no effect on beta2-ARs. Thus, our studies demonstrate a role of the SH3p4/p8/p13 protein family in beta1-AR signaling and suggest that interaction between proline-rich motifs and SH3-containing proteins may represent a previously underappreciated aspect of G-protein coupled receptor signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Na+/H+ exchanger regulatory factor (NHERF) binds to the tail of the beta2-adrenergic receptor and plays a role in adrenergic regulation of Na+/H+ exchange. NHERF contains two PDZ domains, the first of which is required for its interaction with the beta2 receptor. Mutagenesis studies of the beta2 receptor tail revealed that the optimal C-terminal motif for binding to the first PDZ domain of NHERF is D-S/T-x-L, a motif distinct from those recognized by other PDZ domains. The first PDZ domain of NHERF-2, a protein that is 52% identical to NHERF and also known as E3KARP, SIP-1, and TKA-1, exhibits binding preferences very similar to those of the first PDZ domain of NHERF. The delineation of the preferred binding motif for the first PDZ domain of the NHERF family of proteins allows for predictions for other proteins that may interact with NHERF or NHERF-2. For example, as would be predicted from the beta2 receptor tail mutagenesis studies, NHERF binds to the tail of the purinergic P2Y1 receptor, a seven-transmembrane receptor with an intracellular C-terminal tail ending in D-T-S-L. NHERF also binds to the tail of the cystic fibrosis transmembrane conductance regulator, which ends in D-T-R-L. Because the preferred binding motif of the first PDZ domain of the NHERF family of proteins is found at the C termini of a variety of intracellular proteins, NHERF and NHERF-2 may be multifunctional adaptor proteins involved in many previously unsuspected aspects of intracellular signaling.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphorylation of GTP-binding-regulatory (G)-protein-coupled receptors by specific G-protein-coupled receptor kinases (GRKs) is a major mechanism responsible for agonist-mediated desensitization of signal transduction processes. However, to date, studies of the specificity of these enzymes have been hampered by the difficulty of preparing the purified and reconstituted receptor preparations required as substrates. Here we describe an approach that obviates this problem by utilizing highly purified membrane preparations from Sf9 and 293 cells overexpressing G-protein-coupled receptors. We use this technique to demonstrate specificity of several GRKs with respect to both receptor substrates and the enhancing effects of G-protein beta gamma subunits on phosphorylation. Enriched membrane preparations of the beta 2- and alpha 2-C2-adrenergic receptors (ARs, where alpha 2-C2-AR refers to the AR whose gene is located on human chromosome 2) prepared by sucrose density gradient centrifugation from Sf9 or 293 cells contain the receptor at 100-300 pmol/mg of protein and serve as efficient substrates for agonist-dependent phosphorylation by beta-AR kinase 1 (GRK2), beta-AR kinase 2 (GRK3), or GRK5. Stoichiometries of agonist-mediated phosphorylation of the receptors by GRK2 (beta-AR kinase 1), in the absence and presence of G beta gamma, are 1 and 3 mol/mol, respectively. The rate of phosphorylation of the membrane receptors is 3 times faster than that of purified and reconstituted receptors. While phosphorylation of the beta 2-AR by GRK2, -3, and -5 is similar, the activity of GRK2 and -3 is enhanced by G beta gamma whereas that of GRK5 is not. In contrast, whereas GRK2 and -3 efficiently phosphorylate alpha 2-C2-AR, GRK5 is quite weak. The availability of a simple direct phosphorylation assay applicable to any cloned G-protein-coupled receptor should greatly facilitate elucidation of the mechanisms of regulation of these receptors by the expanding family of GRKs.