865 resultados para battery-powered


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A force balance system for measuring lift, thrust and pitching moment has been used to measure the performance of fueled scramjet-powered vehicle in the T4 Shock Tunnel at The University of Queensland. Detailed measurements have been made of the effects of different fuel flow rates corresponding to equivalence ratios between 0.0 and 1.5. For proposed scramjet-powered vehicles, the fore-body of the vehicle acts as part of the inlet to the engine and the aft-body acts as the thrust surface for the engine. This type of engine-integrated design leads to a strong coupling between the performance of the engine and the lift and trim characteristics of the vehicle. The measurements show that the lift force increased by approximately 50% and centre-of-pressure changed by approximately 10% of the chord of the vehicle when the equivalence ratio varied from 0.0 to 1.0. The results demonstrate the importance of engine performance to the overall aerodynamic characteristics of engine-integrated scramjet vehicles and that such characteristics can be measured in a shock tunnel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the technical feasibility of a novel cooling system for commercial greenhouses, knowledge of the state of the art in greenhouse cooling is required. An extensive literature review was carried out that highlighted the physical processes of greenhouse cooling and showed the limitations of the conventional technology. The proposed cooling system utilises liquid desiccant technology; hence knowledge of liquid desiccant cooling is also a prerequisite before designing such a system. Extensive literature reviews on solar liquid desiccant regenerators and desiccators, which are essential parts of liquid desiccant cooling systems, were carried out to identify their advantages and disadvantages. In response to the findings, a regenerator and a desiccator were designed and constructed in lab. An important factor of liquid desiccant cooling is the choice of liquid desiccant itself. The hygroscopicity of the liquid desiccant affects the performance of the system. Bitterns, which are magnesium-rich brines derived from seawater, are proposed as an alternative liquid desiccant for cooling greenhouses. A thorough experimental and theoretical study was carried out in order to determine the properties of concentrated bitterns. It was concluded that their properties resemble pure magnesium chloride solutions. Therefore, magnesium chloride solution was used in laboratory experiments to assess the performance of the regenerator and the desiccator. To predict the whole system performance, the physical processes of heat and mass transfer were modelled using gPROMS® advanced process modelling software. The model was validated against the experimental results. Consequently it was used to model a commercials-scale greenhouse in several hot coastal areas in the tropics and sub-tropics. These case studies show that the system, when compared to evaporative cooling, achieves 3oC-5.6oC temperature drop inside the greenhouse in hot and humid places (RH>70%) and 2oC-4oC temperature drop in hot and dry places (50%

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desalination of groundwater is essential in arid regions that are remote from both seawater and freshwater resources. Desirable features of a groundwater desalination system include a high recovery ratio, operation from a sustainable energy source such as solar, and high water output per unit of energy and land. Here we propose a new system that uses a solar-Rankine cycle to drive reverse osmosis (RO). The working fluid such as steam is expanded against a power piston that actuates a pump piston which in turn pressurises the saline water thus passing it through RO membranes. A reciprocating crank mechanism is used to equalise the forces between the two pistons. The choice of batch mode in preference to continuous flow permits maximum energy recovery and minimal concentration polarisation in the vicinity of the RO membrane. This study analyses the sizing and efficiency of the crank mechanism, quantifies energy losses in the RO separation and predicts the overall performance. For example, a system using a field of linear Fresnel collectors occupying 1000 m2 of land and raising steam at 200 °C and 15.5 bar could desalinate 350 m3/day from saline water containing 5000 ppm of sodium chloride with a recovery ratio of 0.7.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have directly measured properties of concentrated seawater brines produced through solar evaporation in salt works. They are sufficiently hygroscopic for use in desiccant cooling cycles which can cool air to 8.0–10.9 °C below ambient. This compares to only 3.8–8.7 °C with simple evaporative cooling. Desiccant cooling can extend the growing seasons of greenhouse crops thus providing an adaptive measure against climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments and theoretical modelling have been carried out to predict the performance of a solar-powered liquid desiccant cooling system for greenhouses. We have tested two components of the system in the laboratory using MgCl2 desiccant: (i) a regenerator which was tested under a solar simulator and (ii) a desiccator which was installed in a test duct. Theoretical models have been developed for both regenerator and desiccator and gave good agreement with the experiments. The verified computer model is used to predict the performance of the whole system during the hot summer months in Mumbai, Chittagong, Muscat, Messina and Havana. Taking examples of temperate, sub-tropical, tropical and heat-tolerant tropical crops (lettuce, soya bean, tomato and cucumber respectively) we estimate the extensions in growing seasons enabled by the system. Compared to conventional evaporative cooling, the desiccant system lowers average daily maximum temperatures in the hot season by 5.5-7.5 °C, sufficient to maintain viable growing conditions for lettuce throughout the year. In the case of tomato, cucumber and soya bean the system enables optimal cultivation through most summer months. It is concluded that the concept is technically viable and deserves testing by means of a pilot installation at an appropriate location.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid desiccant systems are of potential interest as a means of cooling greenhouses to temperatures below those achieved by conventional means. However, only very little work has been done on this technology with previous workers focussing on the cooling of human dwellings using expensive desiccants such as lithium salts. In this study we are designing a system for greenhouse cooling based on magnesium chloride desiccant which is an abundant and non-toxic substance. Magnesium chloride is found in seawater, for example, and is a by-product from solar salt works. We have carried out a detailed experimental study of the relevant properties of magnesium rich solutions. In addition we have constructed a test rig that includes the main components of the cooling system, namely a dehumidifier and solar regenerator. The dehumidifier is a cross-flow device that consists of a structured packing made of corrugated cellulose paper sheets with different flute angles and embedded cooling tubes. The regenerator is of the open type with insulated backing and fabric covering to spread the flow of desiccant solution. Alongside these experiments we are developing a mathematical model in gPROMS® that combines and simulates the heat and mass transfer processes in these components. The model can be applied to various geographical locations. Here we report predictions for Havana (Cuba) and Manila (Philippines), where we find that average wet-bulb temperatures can be lowered by 2.2 and 3°C, respectively, during the month of May.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to identify and evaluate potential areas of technical improvement to solar-powered desalination systems that use reverse osmosis (RO). We compare ideal with real specific energy consumption (SEC) to pinpoint the causes of inefficiency. The ideal SEC is compared among different configurations including a batch system driven by a piston, and continuous systems with single or multiple stages with or without energy recovery in each case. For example, to desalinate 1 m3 of freshwater from normal seawater (osmotic pressure 27 bar) will require at least 0.94 kWh of solar energy; thus in a sunny coastal location, up to 1850 m3 of water per year per m2 (m3/m2) of land covered by solar collectors could theoretically be desalinated. For brackish water (osmotic pressure 3 bar), 11570 m3/m2 of fresh water could theoretically be obtained under the same conditions. These ideal values are compared with practically achieved values reported in the literature. The practical energy consumption is found to be typically 40-200 times higher depending on feed water composition, system configuration and energy recovery. For state-of-the-art systems, energy losses at the various steps in the conversion process are quantified and presented with the help of Sankey diagrams. Improvements that could reduce the losses are discussed. Consequently, recommendations for areas of R&D are highlighted with particular reference to emerging technologies. It is concluded that there is considerable scope to improve the efficiency of solar-powered RO system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desalination of groundwater is essential in many arid areas that are far from both seawater and fresh water resources. The ideal groundwater desalination system should operate using a sustainable energy source and provide high water output per land area and cost. To avoid discharging voluminous brine, it should also provide high recovery. To achieve these aims, we have designed DesaLink, a novel approach to linking the solar Rankine cycle to reverse osmosis (RO). To achieve high recovery without the need for multiple RO stages, DesaLink adopts a batch mode of operation. It is suited to use with a variety of solar thermal collectors including linear Fresnel reflectors (LFR). For example, using a LFR occupying 1,000m of land and providing steam at 200°C and 15.5 bar, DesaLink is predicted to provide 350m of fresh water per day at a recovery ratio of 0.7, when fed with brackish groundwater containing 5,000ppm of sodium chloride. Here, we report preliminary experiments to assess the feasibility of the concept. We study the effects of longitudinal dispersion, concentration polarisation and describe a pilot experiment to demonstrate the batch process using a materials testing machine. In addition, we demonstrate a prototype of DesaLink running from compressed air to simulate steam.