960 resultados para bacterial killing
Resumo:
Oxalate catabolism, which can have both medical and environmental implications, is performed by phylogenetically diverse bacteria. The formyl-CoA-transferase gene was chosen as a molecular marker of the oxalotrophic function. Degenerated primers were deduced from an alignment of frc gene sequences available in databases. The specificity of primers was tested on a variety of frc-containing and frc-lacking bacteria. The frc-primers were then used to develop PCR-DGGE and real-time SybrGreen PCR assays in soils containing various amounts of oxalate. Some PCR products from pure cultures and from soil samples were cloned and sequenced. Data were used to generate a phylogenetic tree showing that environmental PCR products belonged to the target physiological group. The extent of diversity visualised on DGGE pattern was higher for soil samples containing carbonate resulting from oxalate catabolism. Moreover, the amount of frc gene copies in the investigated soils was detected in the range of 1.64x10(7) to 1.75x10(8)/g of dry soil under oxalogenic tree (representing 0.5 to 1.2% of total 16S rRNA gene copies), whereas the number of frc gene copies in the reference soil was 6.4x10(6) (or 0.2% of 16S rRNA gene copies). This indicates that oxalotrophic bacteria are numerous and widespread in soils and that a relationship exists between the presence of the oxalogenic trees Milicia excelsa and Afzelia africana and the relative abundance of oxalotrophic guilds in the total bacterial communities. This is obviously related to the accomplishment of the oxalate-carbonate pathway, which explains the alkalinization and calcium carbonate accumulation occurring below these trees in an otherwise acidic soil. The molecular tools developed in this study will allow in-depth understanding of the functional implication of these bacteria on carbonate accumulation as a way of atmospheric CO(2) sequestration.
Resumo:
OBJECTIVES: Daptomycin was tested in vitro and in rats with experimental endocarditis against the ampicillin-susceptible and vancomycin-susceptible Enterococcus faecalis JH2-2, the vancomycin-resistant (VanA type) mutant of strain JH2-2 (strain JH2-2/pIP819), and the ampicillin-resistant and vancomycin-resistant (VanB type) Enterococcus faecium D366. METHODS: Rats with catheter-induced aortic vegetations were treated with doses simulating intravenously kinetics in humans of daptomycin (6 mg/kg every 24 h), amoxicillin (2 g every 6 h), vancomycin (1 g every 12 h) or teicoplanin (12 mg/kg every 12 h). Treatment was started 16 h post-inoculation and continued for 2 days. RESULTS: MICs of daptomycin were 1, 1 and 2 mg/L, respectively, for strains JH2-2, JH2-2/pIP819 and D366. In time-kill studies, daptomycin showed rapid (within 2 h) bactericidal activity against all strains. Daptomycin was highly bound to rat serum proteins (89%). In the presence of 50% rat serum, simulating free concentrations, daptomycin killing was maintained but delayed (6-24 h). In vivo, daptomycin treatment resulted in 10 of 12 (83%), 9 of 11 (82%) and 11 of 12 (91%) culture-negative vegetations in rats infected with strains JH2-2, JH2-2/pIP819 and D366, respectively (P < 0.001 compared to controls). Daptomycin efficacy was comparable to that of amoxicillin and vancomycin for susceptible isolates. Daptomycin, however, was significantly (P < 0.05) more effective than teicoplanin against the glycopeptide-susceptible strain JH2-2 and superior to all comparators against resistant isolates. CONCLUSIONS: These results support the use of the newly proposed daptomycin dose of 6 mg/kg every 24 h for treatment of enterococcal infections in humans.
Resumo:
The bacterial insertion sequence IS21 shares with many insertion sequences a two-step, reactive junction transposition pathway, for which a model is presented in this review: a reactive junction with abutted inverted repeats is first formed and subsequently integrated into the target DNA. The reactive junction occurs in IS21-IS21 tandems and IS21 minicircles. In addition, IS21 shows a unique specialization of transposition functions. By alternative translation initiation, the transposase gene codes for two products: the transposase, capable of promoting both steps of the reactive junction pathway, and the cointegrase, which only promotes the integration of reactive junctions but with higher efficiency. This review also includes a survey of the IS21 family and speculates on the possibility that other members present a similar transpositional specialization.
Resumo:
Severe sepsis and septic shock are lethal complications of infection, characterised by dysregulated inflammatory and immune responses. Our understanding of the pathogenesis of sepsis has improved markedly in recent years, but unfortunately has not been translated into efficient treatment strategies. Epigenetic mechanisms such as covalent modification of histones by acetylation are master regulators of gene expression under physiological and pathological conditions, and strongly impact on inflammatory and host defence responses. Histone acetylation is controlled by histone acetyltransferases and histone deacetylases (HDACs), which affect gene expression also by targeting non-histone transcriptional regulators. Numerous HDAC inhibitors (HDACi) are being tested in clinical trials, primarily for the treatment of cancer. We performed the first comprehensive study of the impact of HDACi on innate immune responses in vitro and in vivo. We showed that HDACi act essentially as negative regulators of the expression of critical immune receptors and antimicrobial pathways in innate immune cells. In agreement, HDACi impaired phagocytosis and killing of bacteria by macrophages, and increased susceptibility to non-severe bacterial and fungal infections. Strikingly, proof-of-principle studies demonstrated that HDACi protect from lethal toxic shock and septic shock. Overall, our observations argue for a close monitoring of the immunological and infection status of patients treated with HDACi, especially immunocompromised cancer patients. They also support the concept of pharmacological inhibitors of HDACs as promising drugs to treat inflammatory diseases, including sepsis.
Resumo:
Background: Negative pressure wound treatment is increasingly used through a Vacuum-Assisted Closure (VAC) device in complex wound situations. For this purpose, sterile polyurethane (PU) and polyvinyl alcohol (PVA) foam dressings are fitted to the wound size and covered with an adhesive drape to create an airtight seal. Little information exists about the type and quantity of microorganisms within the foams. Therefore, we investigated VAC foams after removal from the wound using a validated method (sonication) to detect the bacterial bioburden in the foam consisting as microbial biofilms.Methods: We prospectively included VAC foams (PU and PVA, KCI, Rümlamg, Switzerland) without antibacterial additions (e.g. silver), which were removed from wounds in patients with chronic ulcers from January 2007 through December 2008. Excluded were patients with acute wound infection, necrotizing fasciitis, underlying osteomyelitis or implant. Removed foams from regular changes of dressing were aseptically placed in a container with 100 ml sterile Ringer's solution. Within 4 hours after removal, foams were sonicated for 5 min at 40 kHz (as described in NEJM 2007;357:654). The resulting sonication fluid was cultured at 37°C on aerobic blood agar plates for 5 days. Microbes were quantified as No. of colony-forming units (CFU)/ml sonication fluid and identified to the species level.Results: A total of 68 foams (38 PU and 30 PVA) from 55 patients were included in the study (median age 71 years; range 33-88 years, 57% were man). Foams were removed from the following anatomic sites: sacrum (n=29), ischium (n=18), heel (n=13), calves (n=6) and ankle (n=2). The median duration of being in place was 3 days (range, 1-8 days). In all 68 foams, bacteria were found in large quantities (median 105 CFU/ml, range 102-7 CFU/ml sonication fluid. No differences were found between PU and PVA foams. One type of organisms was found in 11 (16%), two in 17 (24%) and 3 or more in 40 (60%) foams. Gram-negative rods (Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa) were isolated in 70%, followed by Staphylococcus aureus (20%), koagulase-negative staphylococci, streptococci (8%), and enterococci (2%).Conclusion: With sonication, a high density of bacteria present in VAC foams was demonstrated after a median of 3 days. Future studies are needed to investigate whether antimicrobial-impregnated foams can reduce the bacterial load in foams and potentially improve wound healing.
Resumo:
The Iowa Department of Natural Resources has produced an 4 page article about how to assess Iowa's streams and rivers. How to use ambient monitoring of streams and river in Iowa.
Resumo:
Although hemoglobin (Hb) is mainly present in the cytoplasm of erythrocytes (red blood cells), lower concentrations of pure, cell-free Hb are released permanently into the circulation due to an inherent intravascular hemolytic disruption of erythrocytes. Previously it was shown that the interaction of Hb with bacterial endotoxins (lipopolysaccharides, LPS) results in a significant increase of the biological activity of LPS. There is clear evidence that the enhancement of the biological activity of LPS by Hb is connected with a disaggregation of LPS. From these findings one questions whether the property to enhance the biological activity of endotoxin, in most cases proven by the ability to increase the cytokine (tumor-necrosis-factor-alpha, interleukins) production in human mononuclear cells, is restricted to bacterial endotoxin or is a more general principle in nature. To elucidate this question, we investigated the interaction of various synthetic and natural virulence (pathogenicity) factors with hemoglobin of human or sheep origin. In addition to enterobacterial R-type LPS a synthetic bacterial lipopeptide and synthetic phospholipid-like structures mimicking the lipid A portion of LPS were analysed. Furthermore, we also tested endotoxically inactive LPS and lipid A compounds such as those from Chlamydia trachomatis. We found that the observations made for endotoxically active form of LPS can be generalized for the other synthetic and natural virulence factors: In every case, the cytokine-production induced by them is increased by the addition of Hb. This biological property of Hb is connected with its physical property to convert the aggregate structures of the virulence factors into one with cubic symmetry, accompanied with a considerable reduction of the size and number of the original aggregates.
Resumo:
Human activities have resulted in the release and introduction into the environment of a plethora of aromatic chemicals. The interest in discovering how bacteria are dealing with hazardous environmental pollutants has driven a large research community and has resulted in important biochemical, genetic, and physiological knowledge about the degradation capacities of microorganisms and their application in bioremediation, green chemistry, or production of pharmacy synthons. In addition, regulation of catabolic pathway expression has attracted the interest of numerous different groups, and several catabolic pathway regulators have been exemplary for understanding transcription control mechanisms. More recently, information about regulatory systems has been used to construct whole-cell living bioreporters that are used to measure the quality of the aqueous, soil, and air environment. The topic of biodegradation is relatively coherent, and this review presents a coherent overview of the regulatory systems involved in the transcriptional control of catabolic pathways. This review summarizes the different regulatory systems involved in biodegradation pathways of aromatic compounds linking them to other known protein families. Specific attention has been paid to describing the genetic organization of the regulatory genes, promoters, and target operon(s) and to discussing present knowledge about signaling molecules, DNA binding properties, and operator characteristics, and evidence from regulatory mutants. For each regulator family, this information is combined with recently obtained protein structural information to arrive at a possible mechanism of transcription activation. This demonstrates the diversity of control mechanisms existing in catabolic pathways.
Resumo:
Toll-like receptor 4 (TLR4), the signal-transducing molecule of the LPS receptor complex, plays a fundamental role in the sensing of LPS from gram-negative bacteria. Activation of TLR4 signaling pathways by LPS is a critical upstream event in the pathogenesis of gram-negative sepsis, making TLR4 an attractive target for novel antisepsis therapy. To validate the concept of TLR4-targeted treatment strategies in gram-negative sepsis, we first showed that TLR4(-/-) and myeloid differentiation primary response gene 88 (MyD88)(-/-) mice were fully resistant to Escherichia coli-induced septic shock, whereas TLR2(-/-) and wild-type mice rapidly died of fulminant sepsis. Neutralizing anti-TLR4 antibodies were then generated using a soluble chimeric fusion protein composed of the N-terminal domain of mouse TLR4 (amino acids 1-334) and the Fc portion of human IgG1. Anti-TLR4 antibodies inhibited intracellular signaling, markedly reduced cytokine production, and protected mice from lethal endotoxic shock and E. coli sepsis when administered in a prophylactic and therapeutic manner up to 13 h after the onset of bacterial sepsis. These experimental data provide strong support for the concept of TLR4-targeted therapy for gram-negative sepsis.
Resumo:
As the prevalence of smoking has decreased to below 20%, health practitioners interest has shifted towards theprevalence of obesity, and reducing it is one of the major health challenges in decades to come. In this paper westudy the impact that the final product of the anti-smoking campaign, that is, smokers quitting the habit, had onaverage weight in the population. To these ends, we use data from the Behavioral Risk Factors Surveillance System,a large series of independent representative cross-sectional surveys. We construct a synthetic panel that allows us tocontrol for unobserved heterogeneity and we exploit the exogenous changes in taxes and regulations to instrumentthe endogenous decision to give up the habit of smoking. Our estimates, are very close to estimates issued in the 90sby the US Department of Health, and indicate that a 10% decrease in the incidence of smoking leads to an averageweight increase of 2.2 to 3 pounds, depending on choice of specification. In addition, we find evidence that the effectovershoots in the short run, although a significant part remains even after two years. However, when we split thesample between men and women, we only find a significant effect for men. Finally, the implicit elasticity of quittingsmoking to the probability of becoming obese is calculated at 0.58. This implies that the net benefit from reducingthe incidence of smoking by 1% is positive even though the cost to society is $0.6 billions.
Resumo:
OBJECTIVE: To study the correlation between the bacteriological and histopathological findings in placentas from women with suspected or proven chorioamnionitis (CA). METHODS: Over a 1-year period, 376 placentas were prospectively collected and processed for bacteriological and pathological studies in cases of confirmed or suspected maternal or neonatal infection. RESULTS: Histological CA was diagnosed in 26.9% of placentas (101/376), and 27.7% (28/101) of these placentas had positive bacteriological cultures. A monomicrobial culture, mainly represented by Gram-positive cocci and Gram-negative bacilli, was identified in 27% of the positive bacterial cultures. The proportion of positive cultures was higher (p=0.03) when CA was associated with funisitis, as compared with placental samples with early CA. In placentas without histological CA, bacteriological cultures were mostly negative (230/275), although pathogenic bacteria were identified in 16.3% of them (45/275). CONCLUSIONS: The histological and bacteriological results were concordant in about 70% of the examined placentas, with 61.1% negative cases (CA absent and negative bacterial cultures), and only 7.4% placentas with positive histological and bacteriological results. Discordant results (positive histology with negative bacteriology) were obtained in placentas with early CA documented by histology although possibly in relation with antibiotic prophylaxis and the presence of fastidious bacteria. Conversely, negative histology with positive bacteriology could be explained by the presence of an early-stage bacterial infection that has not yet led to detectable microscopic lesions.
Resumo:
The aim of the present study was to investigate the potential synergy between meropenem and levofloxacin in vitro and in experimental meningitis and to determine the effect of meropenem on levofloxacin-induced resistance in vitro. Meropenem increased the efficacy of levofloxacin against the penicillin-resistant pneumococcal strain KR4 in time-killing assays in vitro and acted synergistically against a second penicillin-resistant strain WB4. In the checkerboard, only an additive effect (FIC indices: 1.0) was observed for both strains. In cycling experiments in vitro, levofloxacin alone led to a 64-fold increase in the MIC for both strains after 12 cycles. Addition of meropenem in sub-MIC concentrations (0.25 x MIC) completely inhibited the selection of levofloxacin-resistant mutants in WB4 after 12 cycles. In KR4, the addition of meropenem led to just a twofold increase in the MIC for levofloxacin after 12 cycles. Mutations detected in the genes encoding for topoisomerase IV (parC) and gyrase (gyrA) confirmed the levofloxacin-induced resistance in both strains. Addition of meropenem was able to completely suppress levofloxacin-induced mutations in WB4 and led to only one mutation in parE in KR4. In experimental meningitis, meropenem, given in two doses (2 x 125 mg/kg), produced a good bactericidal activity (-0.45 Deltalog10 cfu/ml.h) comparable to one dose (1 x 10 mg/kg) of levofloxacin (-0.44 Deltalog10 cfu/ml.h) against the penicillin-resistant strain WB4. Meropenem combined with levofloxacin acted synergistically (-0.93 Deltalog10 cfu/ml.h), sterilizing the CSF of all rabbits.
Resumo:
Mammary tumors of a newly isolated strain of Chinese wild mouse (JYG mouse) harbor exogenous mouse mammary tumor virus (MMTV). The complete nucleotide sequence of exogenous JYG-MMTV was determined on the proviral 5' long terminal repeat (LTR)(partial)-gag-pol-env-3' LTR (partial) fragment cloned into a plasmid vector and the cDNA sequence from JYG-MMTV producing cells. Similarly to the other MMTV species the LTR of JYG-MMTV contains an open reading frame (ORF). The amino acid sequence of the JYG-MMTV ORF resembles that of SW-MMTV (92% identity) and endogenous Mtv-7 (93% identity) especially at the C-terminal region. Thus, a functional similarity in T-cell receptor V beta recognition as a superantigen is implicated among these MMTV species. Analysis of the viral gag nucleotide sequence revealed that this gene is not disrupted by the bacterial insertion sequence IS1 or IS2, which have been reported to be present in the majority of the plasmids containing the gag region. Comparison of amino acid sequences of JYG-MMTV with those of BR6-MMTV showed that over 96% of the amino acids of gag, pol, protease and env products are identical. These results suggest the intact nature of the nucleotide sequence of the near full-length MMTV genome cloned in the plasmid.