887 resultados para autonomic ganglia
Resumo:
The etiology of primary open-angle glaucoma (POAG) remains the subject of continuing investigation. Despite the many known risk factors and mechanism of damage, the principal treatment objectives in POAG still consist of reduction of intraocular pressure, which although straightforward in many cases, often leaves the clinician with the question of how far to pursue a sufficiently low pressure to prevent further damage. Other risk factors such as hemodynamic insufficiency due to vascular dysregulation and abnormal blood pressure are often overlooked in the day-to-day practice; their harmful effects for glaucoma are, it seems, more potent at night while the patient sleeps and when clinical investigation is most difficult. Although the status of autonomic nervous system is an important determinant of the systemic hemodynamic parameters, this issue is usually ignored by the clinician in the process of glaucoma diagnosis. Consequently, there is a lack of alternative therapies tailored to address associated systemic risk factors for POAG on a case and chronological basis; this approach could be more effective in preventing the progression and visual loss in selected glaucoma cases. © 2004 Elsevier Inc. All rights reserved.
Resumo:
Autonomic systems are required to adapt continually to changing environments and user goals. This process involves the real-Time update of the system's knowledge base, which should therefore be stored in a machine-readable format and automatically checked for consistency. OWL ontologies meet both requirements, as they represent collections of knowl- edge expressed in FIrst order logic, and feature embedded reasoners. To take advantage of these OWL ontology char- acteristics, this PhD project will devise a framework com- prising a theoretical foundation, tools and methods for de- veloping knowledge-centric autonomic systems. Within this framework, the knowledge storage and maintenance roles will be fulfilled by a specialised class of OWL ontologies. ©2014 ACM.
Functional neuroanatomy and behavioural correlates of the basal ganglia:evidence from lesion studies
Resumo:
Introduction: The basal ganglia are interconnected with cortical areas involved in behavioural, cognitive and emotional processes, in addition to movement regulation. Little is known about which of these functions are associated with individual basal ganglia substructures. Methods: Pubmed was searched for literature related to behavioural, cognitive and emotional symptoms associated with focal lesions to basal ganglia structures in humans. Results: Six case-control studies and two case reports were identified as relevant. Lesion sites included the caudate nucleus, putamen and globus pallidus. These were associated with a spectrum of behavioural and cognitive symptoms, including abulia, poor working memory and deficits in emotional recognition. Discussion: It is often difficult to precisely map associations between cognitive, emotional or behavioural functions and particular basal ganglia substructures, due to the non-specific nature of the lesions. However, evidence from lesion studies shows that most symptoms correspond with established non-motor frontal-subcortical circuits. © 2013-IOS Press and the authors. All rights reserved.
Resumo:
We investigated 50 young patients with a diagnosis of Rolandic Epilepsy (RE) for the presence of abnormalities in autonomic tone compared with 50 young patients with idiopathic generalized epilepsy with absences and 50 typically developing children of comparable age. We analyzed time domain (N-N interval, pNN50) and frequency domain (High Frequency (HF), Low Frequency (LF) and LF/HF ratio) indices from ten-minute resting EKG activity. Patients with RE showed significantly higher HF and lower LF power and lower LF/HF ratio than controls, independent of the epilepsy group, and did not show significant differences in any other autonomic index with respect to the two control groups. In RE, we found a negative relationship between both seizure load and frequency of sleep interictal EEG abnormalities with parasympathetic drive levels. These changes might be the expression of adaptive mechanisms to prevent the excessive sympathetic drive seen in patients with refractory epilepsies. © 2012 Elsevier Inc.
Resumo:
This chapter explores ways in which rigorous mathematical techniques, termed formal methods, can be employed to improve the predictability and dependability of autonomic computing. Model checking, formal specification, and quantitative verification are presented in the contexts of conflict detection in autonomic computing policies, and of implementation of goal and utility-function policies in autonomic IT systems, respectively. Each of these techniques is illustrated using a detailed case study, and analysed to establish its merits and limitations. The analysis is then used as a basis for discussing the challenges and opportunities of this endeavour to transition the development of autonomic IT systems from the current practice of using ad-hoc methods and heuristic towards a more principled approach. © 2012, IGI Global.
Resumo:
To benefit from the advantages that Cloud Computing brings to the IT industry, management policies must be implemented as a part of the operation of the Cloud. Among others, for example, the specification of policies can be used for the management of energy to reduce the cost of running the IT system or also for security policies while handling privacy issues of users. As cloud platforms are large, manual enforcement of policies is not scalable. Hence, autonomic approaches for management policies have recently received a considerable attention. These approaches allow specification of rules that are executed via rule-engines. The process of rules creation starts by the interpretation of the policies drafted by high-rank managers. Then, technical IT staff translate such policies to operational activities to implement them. Such process can start from a textual declarative description and after numerous steps terminates in a set of rules to be executed on a rule engine. To simplify the steps and to bridge the considerable gap between the declarative policies and executable rules, we propose a domain-specific language called CloudMPL. We also design a method of automated transformation of the rules captured in CloudMPL to the popular rule-engine Drools. As the policies are changed over time, code generation will reduce the time required for the implementation of the policies. In addition, using a declarative language for writing the specifications is expected to make the authoring of rules easier. We demonstrate the use of the CloudMPL language into a running example extracted from a management energy consumption case study.
Resumo:
The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems. © 2010 Elsevier Inc.
Resumo:
The tragic events of September 11th ushered a new era of unprecedented challenges. Our nation has to be protected from the alarming threats of adversaries. These threats exploit the nation's critical infrastructures affecting all sectors of the economy. There is the need for pervasive monitoring and decentralized control of the nation's critical infrastructures. The communications needs of monitoring and control of critical infrastructures was traditionally catered for by wired communication systems. These technologies ensured high reliability and bandwidth but are however very expensive, inflexible and do not support mobility and pervasive monitoring. The communication protocols are Ethernet-based that used contention access protocols which results in high unsuccessful transmission and delay. An emerging class of wireless networks, named embedded wireless sensor and actuator networks has potential benefits for real-time monitoring and control of critical infrastructures. The use of embedded wireless networks for monitoring and control of critical infrastructures requires secure, reliable and timely exchange of information among controllers, distributed sensors and actuators. The exchange of information is over shared wireless media. However, wireless media is highly unpredictable due to path loss, shadow fading and ambient noise. Monitoring and control applications have stringent requirements on reliability, delay and security. The primary issue addressed in this dissertation is the impact of wireless media in harsh industrial environment on the reliable and timely delivery of critical data. In the first part of the dissertation, a combined networking and information theoretic approach was adopted to determine the transmit power required to maintain a minimum wireless channel capacity for reliable data transmission. The second part described a channel-aware scheduling scheme that ensured efficient utilization of the wireless link and guaranteed delay. Various analytical evaluations and simulations are used to evaluate and validate the feasibility of the methodologies and demonstrate that the protocols achieved reliable and real-time data delivery in wireless industrial networks.
Resumo:
As researchers and practitioners move towards a vision of software systems that configure, optimize, protect, and heal themselves, they must also consider the implications of such self-management activities on software reliability. Autonomic computing (AC) describes a new generation of software systems that are characterized by dynamically adaptive self-management features. During dynamic adaptation, autonomic systems modify their own structure and/or behavior in response to environmental changes. Adaptation can result in new system configurations and capabilities, which need to be validated at runtime to prevent costly system failures. However, although the pioneers of AC recognize that validating autonomic systems is critical to the success of the paradigm, the architectural blueprint for AC does not provide a workflow or supporting design models for runtime testing. ^ This dissertation presents a novel approach for seamlessly integrating runtime testing into autonomic software. The approach introduces an implicit self-test feature into autonomic software by tailoring the existing self-management infrastructure to runtime testing. Autonomic self-testing facilitates activities such as test execution, code coverage analysis, timed test performance, and post-test evaluation. In addition, the approach is supported by automated testing tools, and a detailed design methodology. A case study that incorporates self-testing into three autonomic applications is also presented. The findings of the study reveal that autonomic self-testing provides a flexible approach for building safe, reliable autonomic software, while limiting the development and performance overhead through software reuse. ^
Resumo:
This Thesis main objective is to implement a supporting architecture to Autonomic Hardware systems, capable of manage the hardware running in reconfigurable devices. The proposed architecture implements manipulation, generation and communication functionalities, using the Context Oriented Active Repository approach. The solution consists in a Hardware-Software based architecture called "Autonomic Hardware Manager (AHM)" that contains an Active Repository of Hardware Components. Using the repository the architecture will be able to manage the connected systems at run time allowing the implementation of autonomic features such as self-management, self-optimization, self-description and self-configuration. The proposed architecture also contains a meta-model that allows the representation of the Operating Context for hardware systems. This meta-model will be used as basis to the context sensing modules, that are needed in the Active Repository architecture. In order to demonstrate the proposed architecture functionalities, experiments were proposed and implemented in order to proof the Thesis hypothesis and achieved objectives. Three experiments were planned and implemented: the Hardware Reconfigurable Filter, that consists of an application that implements Digital Filters using reconfigurable hardware; the Autonomic Image Segmentation Filter, that shows the project and implementation of an image processing autonomic application; finally, the Autonomic Autopilot application that consist of an auto pilot to unmanned aerial vehicles. In this work, the applications architectures were organized in modules, according their functionalities. Some modules were implemented using HDL and synthesized in hardware. Other modules were implemented kept in software. After that, applications were integrated to the AHM to allow their adaptation to different Operating Context, making them autonomic.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thesis (Master's)--University of Washington, 2016-08