963 resultados para automatic target detection
Resumo:
Leveraging cloud services, companies and organizations can significantly improve their efficiency, as well as building novel business opportunities. Cloud computing offers various advantages to companies while having some risks for them too. Advantages offered by service providers are mostly about efficiency and reliability while risks of cloud computing are mostly about security problems. Problems with security of the cloud still demand significant attention in order to tackle the potential problems. Security problems in the cloud as security problems in any area of computing, can not be fully tackled. However creating novel and new solutions can be used by service providers to mitigate the potential threats to a large extent. Looking at the security problem from a very high perspective, there are two focus directions. Security problems that threaten service user’s security and privacy are at one side. On the other hand, security problems that threaten service provider’s security and privacy are on the other side. Both kinds of threats should mostly be detected and mitigated by service providers. Looking a bit closer to the problem, mitigating security problems that target providers can protect both service provider and the user. However, the focus of research community mostly is to provide solutions to protect cloud users. A significant research effort has been put in protecting cloud tenants against external attacks. However, attacks that are originated from elastic, on-demand and legitimate cloud resources should still be considered seriously. The cloud-based botnet or botcloud is one of the prevalent cases of cloud resource misuses. Unfortunately, some of the cloud’s essential characteristics enable criminals to form reliable and low cost botclouds in a short time. In this paper, we present a system that helps to detect distributed infected Virtual Machines (VMs) acting as elements of botclouds. Based on a set of botnet related system level symptoms, our system groups VMs. Grouping VMs helps to separate infected VMs from others and narrows down the target group under inspection. Our system takes advantages of Virtual Machine Introspection (VMI) and data mining techniques.
Resumo:
The difficulty on identifying, lack of segregation systems and absence of suitable standards for coexistence of non trangenic and transgenic soybean are contributing for contaminations that occur during productive system. The objective of this study was to evaluate the efficiency of two methods for detecting mixtures of seeds genetically modified (GM) into samples of non-GM soybean, in a way that seed lots can be assessed within the standards established by seed legislation. Two sizes of soybean samples (200 and 400 seeds), cv. BRSMG 810C (non-GM) and BRSMG 850GRR (GM), were assessed with four contamination levels (addition of GM seeds, for obtaining 0.0%, 0.5%, 1.0%, and 1.5% contamination), and two detection methods: immunoassay of lateral flux (ILF) and bioassay (pre-imbibition into 0.6% herbicide solution; 25 ºC; 16 h). The bioassay is efficient in detecting presence of GM seeds in seed samples of non-GM soybean, even for contamination lower than 1.0%, provided that seeds have high physiological quality. The ILF was positive, detecting the presence of target protein in contaminated samples, indicating test effectiveness. There was significant correlation between the two detection methods (r = 0.82; p < 0.0001). Sample size did not influence efficiency of the two methods in detecting presence of GM seeds.
Resumo:
Epilepsy is a chronic brain disorder, characterized by reoccurring seizures. Automatic sei-zure detector, incorporated into a mobile closed-loop system, can improve the quality of life for the people with epilepsy. Commercial EEG headbands, such as Emotiv Epoc, have a potential to be used as the data acquisition devices for such a system. In order to estimate that potential, epileptic EEG signals from the commercial devices were emulated in this work based on the EEG data from a clinical dataset. The emulated characteristics include the referencing scheme, the set of electrodes used, the sampling rate, the sample resolution and the noise level. Performance of the existing algorithm for detection of epileptic seizures, developed in the context of clinical data, has been evaluated on the emulated commercial data. The results show, that after the transformation of the data towards the characteristics of Emotiv Epoc, the detection capabilities of the algorithm are mostly preserved. The ranges of acceptable changes in the signal parameters are also estimated.
Resumo:
Event-related potentials were recorded from 10-year-old children and young adults in order to examine the developmental dififerences in two frontal lobe functions: detection of novel stimuli during an auditory novelty oddball task, and error detection during a visual flanker task. All participants showed a parietally-maximal P3 in response to auditory stimuli. In children, novel stimuli generated higher P3 amplitudes at the frontal site compared with target stimuli, whereas target stimuli generated higher P3 amplitudes at the parietal site compared with novel stimuli. Adults, however, had higher P3 amplitude to novel tones compared with target tones at each site. Children also had greater P3 amplitude at more parietal sites than adults during the novelty oddball and flanker tasks. Furthermore, children and adults did not show a significant reduction in P3 amplitude from the first to second novel stimulus presentation. No age differences were found with respect to P3 latency to novel and target stimuli. These findings suggest that the detection of novel and target stimuli is mature in 10-year-olds. Error trials typically elicit a negative ERP deflection (the ERN) with a frontal-central scalp distribution that may reflect response monitoring. There is also evidence of a positive ERP peak (the Pe) with a posterior scalp distribution which may reflect subjective recognition of a response. Both children and adults showed an ERN and Pe maximal at frontal-central sites. Children committed more errors, had smaller ERN across sites, and had a larger Pe at the parietal site than adults. This suggests that response monitoring is still immature in 10-year-olds whereas recognition of and emotional responses to errors may be similar in children and adults.
Resumo:
A complex network is an abstract representation of an intricate system of interrelated elements where the patterns of connection hold significant meaning. One particular complex network is a social network whereby the vertices represent people and edges denote their daily interactions. Understanding social network dynamics can be vital to the mitigation of disease spread as these networks model the interactions, and thus avenues of spread, between individuals. To better understand complex networks, algorithms which generate graphs exhibiting observed properties of real-world networks, known as graph models, are often constructed. While various efforts to aid with the construction of graph models have been proposed using statistical and probabilistic methods, genetic programming (GP) has only recently been considered. However, determining that a graph model of a complex network accurately describes the target network(s) is not a trivial task as the graph models are often stochastic in nature and the notion of similarity is dependent upon the expected behavior of the network. This thesis examines a number of well-known network properties to determine which measures best allowed networks generated by different graph models, and thus the models themselves, to be distinguished. A proposed meta-analysis procedure was used to demonstrate how these network measures interact when used together as classifiers to determine network, and thus model, (dis)similarity. The analytical results form the basis of the fitness evaluation for a GP system used to automatically construct graph models for complex networks. The GP-based automatic inference system was used to reproduce existing, well-known graph models as well as a real-world network. Results indicated that the automatically inferred models exemplified functional similarity when compared to their respective target networks. This approach also showed promise when used to infer a model for a mammalian brain network.
Resumo:
MicroRNAs (miRNAs) are a class of short (similar to 22nt), single stranded RNA molecules that function as post-transcriptional regulators of gene expression. MiRNAs can regulate a variety of important biological pathways, including: cellular proliferation, differentiation and apoptosis. Profiling of miRNA expression patterns was shown to be more useful than the equivalent mRNA profiles for characterizing poorly differentiated tumours. As such, miRNA expression "signatures" are expected to offer serious potential for diagnosing and prognosing cancers of any provenance. The aim of this study was to investigate the potential of using deregulation of urinary miRNAs in order to detect Prostate Cancer (PCa) among Benign Prostatic Hyperplasia (BPH). To identify the miRNA signatures specific for PCa, miRNA expression profiling of 8 PCa patients, 12 BPH patients and 10 healthy males was carried out using whole genome expression profiling. Differential expression of two individual miRNAs between healthy males and BPH patients was detected and found to possibly target genes related to PCa development and progression. The sensitivity and specificity of miR-1825 for detecting PCa among BPH individuals was found to be 60% and 69%, respectively. Whereas, the sensitivity and specificity of miR-484 were 80% and 19%, respectively. Additionally, the sensitivity and specificity for miR-1825/484 in tandem were 45% and 75%, respectively. The proposed PCa miRNA signatures may therefore be of great value for the accurate diagnosis of PCa and BPH. This exploratory study has identified several possible targets that merit further investigation towards the development and validation of diagnostically useful, non-invasive, urine-based tests that might not only help diagnose PCa but also possibly help differentiate it from BPH.
Object-Oriented Genetic Programming for the Automatic Inference of Graph Models for Complex Networks
Resumo:
Complex networks are systems of entities that are interconnected through meaningful relationships. The result of the relations between entities forms a structure that has a statistical complexity that is not formed by random chance. In the study of complex networks, many graph models have been proposed to model the behaviours observed. However, constructing graph models manually is tedious and problematic. Many of the models proposed in the literature have been cited as having inaccuracies with respect to the complex networks they represent. However, recently, an approach that automates the inference of graph models was proposed by Bailey [10] The proposed methodology employs genetic programming (GP) to produce graph models that approximate various properties of an exemplary graph of a targeted complex network. However, there is a great deal already known about complex networks, in general, and often specific knowledge is held about the network being modelled. The knowledge, albeit incomplete, is important in constructing a graph model. However it is difficult to incorporate such knowledge using existing GP techniques. Thus, this thesis proposes a novel GP system which can incorporate incomplete expert knowledge that assists in the evolution of a graph model. Inspired by existing graph models, an abstract graph model was developed to serve as an embryo for inferring graph models of some complex networks. The GP system and abstract model were used to reproduce well-known graph models. The results indicated that the system was able to evolve models that produced networks that had structural similarities to the networks generated by the respective target models.
Resumo:
Ce mémoire de maîtrise présente une nouvelle approche non supervisée pour détecter et segmenter les régions urbaines dans les images hyperspectrales. La méthode proposée n ́ecessite trois étapes. Tout d’abord, afin de réduire le coût calculatoire de notre algorithme, une image couleur du contenu spectral est estimée. A cette fin, une étape de réduction de dimensionalité non-linéaire, basée sur deux critères complémentaires mais contradictoires de bonne visualisation; à savoir la précision et le contraste, est réalisée pour l’affichage couleur de chaque image hyperspectrale. Ensuite, pour discriminer les régions urbaines des régions non urbaines, la seconde étape consiste à extraire quelques caractéristiques discriminantes (et complémentaires) sur cette image hyperspectrale couleur. A cette fin, nous avons extrait une série de paramètres discriminants pour décrire les caractéristiques d’une zone urbaine, principalement composée d’objets manufacturés de formes simples g ́eométriques et régulières. Nous avons utilisé des caractéristiques texturales basées sur les niveaux de gris, la magnitude du gradient ou des paramètres issus de la matrice de co-occurrence combinés avec des caractéristiques structurelles basées sur l’orientation locale du gradient de l’image et la détection locale de segments de droites. Afin de réduire encore la complexité de calcul de notre approche et éviter le problème de la ”malédiction de la dimensionnalité” quand on décide de regrouper des données de dimensions élevées, nous avons décidé de classifier individuellement, dans la dernière étape, chaque caractéristique texturale ou structurelle avec une simple procédure de K-moyennes et ensuite de combiner ces segmentations grossières, obtenues à faible coût, avec un modèle efficace de fusion de cartes de segmentations. Les expérimentations données dans ce rapport montrent que cette stratégie est efficace visuellement et se compare favorablement aux autres méthodes de détection et segmentation de zones urbaines à partir d’images hyperspectrales.
Resumo:
Irradiation of a Polymethyl methacrylate target using a pulsed Nd-YAG laser causes plasma formation in the vicinity of the target. The refractive index gradient due to the presence of the plasma is probed using phase-shift detection technique. The phase-shift technique is a simple but sensitive technique for the determination of laser ablation threshold of solids. The number density of laser generated plasma above the ablation threshold from Polymethyl methacrylate is calculated as a function of laser fluence. The number density varies from 2×1016 cm-3 to 2×1017 cm-3 in the fluence interval 2.8-13 J · cm-2.
Resumo:
This paper describes a novel framework for automatic segmentation of primary tumors and its boundary from brain MRIs using morphological filtering techniques. This method uses T2 weighted and T1 FLAIR images. This approach is very simple, more accurate and less time consuming than existing methods. This method is tested by fifty patients of different tumor types, shapes, image intensities, sizes and produced better results. The results were validated with ground truth images by the radiologist. Segmentation of the tumor and boundary detection is important because it can be used for surgical planning, treatment planning, textural analysis, 3-Dimensional modeling and volumetric analysis
Resumo:
Efficient optic disc segmentation is an important task in automated retinal screening. For the same reason optic disc detection is fundamental for medical references and is important for the retinal image analysis application. The most difficult problem of optic disc extraction is to locate the region of interest. Moreover it is a time consuming task. This paper tries to overcome this barrier by presenting an automated method for optic disc boundary extraction using Fuzzy C Means combined with thresholding. The discs determined by the new method agree relatively well with those determined by the experts. The present method has been validated on a data set of 110 colour fundus images from DRION database, and has obtained promising results. The performance of the system is evaluated using the difference in horizontal and vertical diameters of the obtained disc boundary and that of the ground truth obtained from two expert ophthalmologists. For the 25 test images selected from the 110 colour fundus images, the Pearson correlation of the ground truth diameters with the detected diameters by the new method are 0.946 and 0.958 and, 0.94 and 0.974 respectively. From the scatter plot, it is shown that the ground truth and detected diameters have a high positive correlation. This computerized analysis of optic disc is very useful for the diagnosis of retinal diseases
Resumo:
There is general consensus that context can be a rich source of information about an object's identity, location and scale. In fact, the structure of many real-world scenes is governed by strong configurational rules akin to those that apply to a single object. Here we introduce a simple probabilistic framework for modeling the relationship between context and object properties based on the correlation between the statistics of low-level features across the entire scene and the objects that it contains. The resulting scheme serves as an effective procedure for object priming, context driven focus of attention and automatic scale-selection on real-world scenes.
Resumo:
A recent trend in digital mammography is computer-aided diagnosis systems, which are computerised tools designed to assist radiologists. Most of these systems are used for the automatic detection of abnormalities. However, recent studies have shown that their sensitivity is significantly decreased as the density of the breast increases. This dependence is method specific. In this paper we propose a new approach to the classification of mammographic images according to their breast parenchymal density. Our classification uses information extracted from segmentation results and is based on the underlying breast tissue texture. Classification performance was based on a large set of digitised mammograms. Evaluation involves different classifiers and uses a leave-one-out methodology. Results demonstrate the feasibility of estimating breast density using image processing and analysis techniques
Resumo:
Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately
Resumo:
La presencia de microorganismos patógenos en alimentos es uno de los problemas esenciales en salud pública, y las enfermedades producidas por los mismos es una de las causas más importantes de enfermedad. Por tanto, la aplicación de controles microbiológicos dentro de los programas de aseguramiento de la calidad es una premisa para minimizar el riesgo de infección de los consumidores. Los métodos microbiológicos clásicos requieren, en general, el uso de pre-enriquecimientos no-selectivos, enriquecimientos selectivos, aislamiento en medios selectivos y la confirmación posterior usando pruebas basadas en la morfología, bioquímica y serología propias de cada uno de los microorganismos objeto de estudio. Por lo tanto, estos métodos son laboriosos, requieren un largo proceso para obtener resultados definitivos y, además, no siempre pueden realizarse. Para solucionar estos inconvenientes se han desarrollado diversas metodologías alternativas para la detección identificación y cuantificación de microorganismos patógenos de origen alimentario, entre las que destacan los métodos inmunológicos y moleculares. En esta última categoría, la técnica basada en la reacción en cadena de la polimerasa (PCR) se ha convertido en la técnica diagnóstica más popular en microbiología, y recientemente, la introducción de una mejora de ésta, la PCR a tiempo real, ha producido una segunda revolución en la metodología diagnóstica molecular, como pude observarse por el número creciente de publicaciones científicas y la aparición continua de nuevos kits comerciales. La PCR a tiempo real es una técnica altamente sensible -detección de hasta una molécula- que permite la cuantificación exacta de secuencias de ADN específicas de microorganismos patógenos de origen alimentario. Además, otras ventajas que favorecen su implantación potencial en laboratorios de análisis de alimentos son su rapidez, sencillez y el formato en tubo cerrado que puede evitar contaminaciones post-PCR y favorece la automatización y un alto rendimiento. En este trabajo se han desarrollado técnicas moleculares (PCR y NASBA) sensibles y fiables para la detección, identificación y cuantificación de bacterias patogénicas de origen alimentario (Listeria spp., Mycobacterium avium subsp. paratuberculosis y Salmonella spp.). En concreto, se han diseñado y optimizado métodos basados en la técnica de PCR a tiempo real para cada uno de estos agentes: L. monocytogenes, L. innocua, Listeria spp. M. avium subsp. paratuberculosis, y también se ha optimizado y evaluado en diferentes centros un método previamente desarrollado para Salmonella spp. Además, se ha diseñado y optimizado un método basado en la técnica NASBA para la detección específica de M. avium subsp. paratuberculosis. También se evaluó la aplicación potencial de la técnica NASBA para la detección específica de formas viables de este microorganismo. Todos los métodos presentaron una especificidad del 100 % con una sensibilidad adecuada para su aplicación potencial a muestras reales de alimentos. Además, se han desarrollado y evaluado procedimientos de preparación de las muestras en productos cárnicos, productos pesqueros, leche y agua. De esta manera se han desarrollado métodos basados en la PCR a tiempo real totalmente específicos y altamente sensibles para la determinación cuantitativa de L. monocytogenes en productos cárnicos y en salmón y productos derivados como el salmón ahumado y de M. avium subsp. paratuberculosis en muestras de agua y leche. Además este último método ha sido también aplicado para evaluar la presencia de este microorganismo en el intestino de pacientes con la enfermedad de Crohn's, a partir de biopsias obtenidas de colonoscopia de voluntarios afectados. En conclusión, este estudio presenta ensayos moleculares selectivos y sensibles para la detección de patógenos en alimentos (Listeria spp., Mycobacterium avium subsp. paratuberculosis) y para una rápida e inambigua identificación de Salmonella spp. La exactitud relativa de los ensayos ha sido excelente, si se comparan con los métodos microbiológicos de referencia y pueden serusados para la cuantificación de tanto ADN genómico como de suspensiones celulares. Por otro lado, la combinación con tratamientos de preamplificación ha resultado ser de gran eficiencia para el análisis de las bacterias objeto de estudio. Por tanto, pueden constituir una estrategia útil para la detección rápida y sensible de patógenos en alimentos y deberían ser una herramienta adicional al rango de herramientas diagnósticas disponibles para el estudio de patógenos de origen alimentario.