968 resultados para aromatic compounds
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fly soot samples collected in the sugar cane fields after the process of burning were extracted in a Soxhlet apparatus (methylene chloride:methanol 4:1). The extracts were fractionated on silica gel Sep-Pak cartridges into three fractions. A gas chromatographic-mass spectrometric study of the fly soot extracts allowed the identification of the PAH with mutagenic and carcinogenic properties. Large amounts of aliphatic hydrocarbons, fatty acid esters and some PAHs were identified by GCMS in full scan mode. GC-MS in the selective ion monitoring mode (SIM) was suitable for the determination of many PAHs, which are often present in the burnt biomass. 31 PAHs and 7 thiophens derivatives were identified. The presence of these compounds should be regarded as a caution to workers and the general population to avoid exposure to the fly soot.
Resumo:
Sugar cane burning in Brazil causes remarkable amounts of organic compounds to be emitted amongst which the polycyclic aromatic hydrocarbons (PAHs) represent serious health hazards. Therefore, 24-h aerosol samples (< 10 mum aerodynamic diameter) were collected in Araraquara city (São Paulo state) during the harvest season using a Hi-Vol sampler. PAHs were recovered using an Accelerated Solvent Extractor and analyzed by low-pressure gas chromatography-ion trap mass spectrometry (LP-GC-IT-MS). The fully automated extraction process was performed in less than 25 min with a solvent consumption of approximately 20 ml. The use of a deactivated 0.6 m x 0. 10 mm i.d. restrictor coupled to a 10 m wide-bore analytical column allowed most of the 16 PAHs in EPA's priority list to be identified and quantified in only 13 min. Concentrations of PAHs in Nraraquara aerosols ranged between 0.5 and 8.6 ng m(-3). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The three-layer capacitor model proposed by Demchak and Fort [J. Colloid Interface Sci. 46 (1974) 191] is employed to relate measured surface potentials of Langmuir monolayers from a series of polyphenyl carboxylic acids to molecular dipole moments calculated using semiempirical quantum methods. The effective dielectric constant at the air/monolayer interface is 3.0 +/- 0.6, very close to that estimated for aliphatic compounds. Good agreement between theory and experiment is obtained by adopting a dielectric constant of 6.4 for the monolayer/water interface and a contribution from the water reorientation of -0.064 +/- 0.006 D, which shows that the parameters in the DF model are essentially the same as for aliphatic amphiphiles, such as esters, acids, alcohols and ethers. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work describes the mutagenic response of Sudan III, an adulterant food dye, using Salmonella typhimurium assay and the generation of hazardous aromatic amines after different oxidation methods of this azo dye. For that, we used metabolic activation by S9, catalytic oxidation by ironporphyrin and electrochemistry oxidation in order to simulate endogenous oxidation conditions. The oxidation reactions promoted discoloration from 65% to 95% of Sudan III at 1×10-4molL-1 and generation of 7.6×10-7molL-1 to 0.31×10-4molL-1 of aniline, o-anisidine, 2-methoxi-5-methylaniline, 4-aminobiphenyl, 4,4'-oxydianiline; 4,4'-diaminodiphenylmethane and 2,6-dimethylaniline. The results were confirmed by LC-MS-MS experiments. We also correlate the mutagenic effects of Sudan III using S. typhimurium with the strain TA1535 in the presence of exogenous metabolic activation (S9) with the metabolization products of this compound. Our findings clearly indicate that aromatic amines are formed due to oxidative reactions that can be promoted by hepatic cells, after the ingestion of Sudan III. Considering that, the use of azo compounds as food dyestuffs should be carefully controlled. © 2013 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Antarctic plant communities are dominated by lichens and mosses which accumulate semivolatile organic compounds (SOCs) such as polybrominated diphenyl ethers (PBDEs) directly from the atmosphere. Differences in the levels of PBDEs observed in lichens and mosses collected at King George Island in the austral summers 2004-05 and 2005-06 are probably explained by environmental and/or plant parameters. Contamination of lichens showed a positive correlation with local precipitation, suggesting that wet deposition processes are a major mechanism controlling the uptake of most PBDE congeners. These findings are in agreement with physical-chemical data supporting that tetra- through hepta-BDEs in the Antarctic atmosphere are basically bound to aerosols. Conversely, accumulation of PBDEs in mosses appears to be controlled by other environmental factors and/or plant-specific characteristics. Model simulations demonstrated that an ocean-atmosphere coupling may have played a role in the long-range transport of less volatile SOCs such as PBDEs to Antarctica. According to simulations, the atmosphere is the most important transport medium for PBDEs while the surface ocean serves as a temporary storage compartment, boosting the deposition/volatilization ""hopping"" effect similarly to vegetation on continents. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) and non-aromatic hydrocarbons (NAHs), including n-alkanes, isoprenoids and petroleum biomarkers (terpanes, hopanes, steranes and diasteranes), were quantified by gas chromatography with flame ionization and mass spectrometer detectors in sediment samples collected from the Sao Sebastiao Channel (SSC), Brazil, where the largest Brazilian maritime petroleum terminal is located The concentrations of total PAHs. total n-alkanes and petroleum biomarkers ranged from below the detection limits to 370 ng g(-1,) 28 mu g g(-1), 2200 ng g(-1) (dry weight), respectively. The analysis of PAN distribution suggested combustion sources of PAHs as the main input for these compounds with smaller amount from petroleum contamination The distribution of petroleum biomarkers undoubtedly demonstrated petroleum as a source of anthropogenic contamination throughout the region. The assessment of petrogenic sources of contamination in marine sediment is more challenging if only PAH analysis were carried out, which demonstrates that more stable hydrocarbons such as petroleum biomarkers are useful for investigating potential presence of petroleum (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the first results of polycyclic aromatic hydrocarbons (PAHs) and spheroidal carbonaceous particles (SCPs) in sediment cores of Admiralty Bay, Antarctica. These markers were used to assess the local input of anthropogenic materials (particulate and organic compounds) as a result of the influence of human occupation in a sub-Antarctic region and a possible long-range atmospheric transport of combustion products from sources in South America. The highest SCPs and PAHs concentrations were observed during the last 30 years, when three research stations were built in the area and industrial activities in South America increased. The concentrations of SCPs and PAHs were much lower than those of other regions in the northern hemisphere and other reported data for the southern hemisphere. The PAH isomer ratios showed that the major sources of PAHs are fossil fuels/petroleum, biomass combustion and sewage contribution generally close to the Brazilian scientific station. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Located in southeastern Brazil, the Santos Estuary has the most important industrial and urban population area of South America. Since the 1950`s, increased urbanization and industrialization near the estuary margins has caused the degradation of mangroves and has increased the discharge of sewage and industrial effluents. The main objectives of this work were to determine the concentrations and sources of polycyclic aromatic hydrocarbons (PAHs) in sediment cores in order to investigate the input of these substances in the last 50 years. The PAHs analyses indicated multiple sources of these compounds (oil and pyrolitic origin), basically anthropogenic contributions from biomass, coal and fossil fuels combustion. The distribution of PAHs in the cores was associated with the formation and development of Cubatao industrial complex and the Santos harbour, waste disposal, world oil crisis and the pollution control program, which results in the decrease of organic pollutants input in this area. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This study extends the current knowledge regarding the use of plants for the passive accumulation of anthropogenic PAHs that are present in the atmospheric total suspended particles (TSP) in the tropics and sub-tropics. It is of major relevance because the anthropic emissions of TSP containing PAHs are significant in these regions, but their monitoring is still scarce. We compared the biomonitor efficiency of Lolium multiflorum 'Lema' and tropical tree species (Tibouchina pukka and Psidium guajava 'Paluma') that were growing in an intensely TSP-polluted site in Cubatao (SE Brazil), and established the species with the highest potential for alternative monitoring of PAHs. PAHs present in the TSP indicated that the region is impacted by various emission sources. L. multiflorum showed a greater efficiency for the accumulation of PAH compounds on their leaves than the tropical trees. The linear regression between the logBCF and logKoa revealed that L. multiflorum is an efficient biomonitor of the profile of light and heavy PAHs present in the particulate phase of the atmosphere during dry weather and mild temperatures. The grass should be used only for indicating the PAHs with higher molecular weight in warmer and wetter periods. (C) 2012 Elsevier Inc. All rights reserved.