904 resultados para analytical formulation
Resumo:
We present an analytical field-effect method to extract the density of subgap states (subgap DOS) in amorphous semiconductor thin-film transistors (TFTs), using a closed-form relationship between surface potential and gate voltage. By accounting the interface states in the subthreshold characteristics, the subgap DOS is retrieved, leading to a reasonably accurate description of field-effect mobility and its gate voltage dependence. The method proposed here is very useful not only in extracting device performance but also in physically based compact TFT modeling for circuit simulation.
Resumo:
This paper presents the effect of nonlocal scaling parameter on the coupled i.e., axial, flexural, shear and contraction, wave propagation in single-walled carbon nanotubes (SWCNTs). The axial and transverse motion of SWCNT is modeled based on first order shear deformation theory (FSDT) and thickness contraction. The governing equations are derived based on nonlocal constitutive relations and the wave dispersion analysis is also carried out. The studies shows that the nonlocal scale parameter introduces certain band gap region in all wave modes where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite or wave speed tends to zero. The frequency at which this phenomenon occurs is called the escape frequency. Explicit expressions are derived for cut-off and escape frequencies of all waves in SWCNT. It is also shown that the cut-off frequencies of shear and contraction mode are independent of the nonlocal scale parameter. The results provided in this article are new and are useful guidance for the study and design of the next generation of nanodevices that make use of the coupled wave propagation properties of single-walled carbon nanotubes.
Resumo:
Levy flights can be described using a Fokker-Planck equation, which involves a fractional derivative operator in the position coordinate. Such an operator has its natural expression in the Fourier domain. Starting with this, we show that the solution of the equation can be written as a Hamiltonian path integral. Though this has been realized in the literature, the method has not found applications as the path integral appears difficult to evaluate. We show that a method in which one integrates over the position coordinates first, after which integration is performed over the momentum coordinates, can be used to evaluate several path integrals that are of interest. Using this, we evaluate the propagators for (a) free particle, (b) particle subjected to a linear potential, and (c) harmonic potential. In all the three cases, we have obtained results for both overdamped and underdamped cases. DOI: 10.1103/PhysRevE.86.061105
Resumo:
Objectives: Modified starches based polymeric substances find utmost applicability in pharmaceutical formulation development. Cross-linked starches showed very promising results in drug delivery application. The present investigation concerns with the development of controlled release tablets of lamivudine using cross-linked sago starch. Methods: The cross-linked derivative was synthesized with phosphorous oxychloride and native sago starch in basic pH medium. The cross-linked sago starch was tested for acute toxicity and drug-excipient compatibility study. The formulated tablets were evaluated for various physical characteristics, in vitro dissolution release study and in vivo pharmacokinetic study in rabbit model. Results: In vitro release study showed that the optimized formulation exhibited highest correlation (R) in case of zero order kinetic model and the release mechanism followed a combination of diffusion and erosion process. There was a significant difference in the pharmacokinetic parameters (T-max, C-max, AUC, V-d, T-1/2, and MDT) of the optimized formulation as compared to the marketed conventional tablet Lamivir (R). Conclusion: The cross-linked starch showed promising results in terms of controlling the release behavior of the active drug from the matrix. The hydrophilic matrix synthesized by cross-linking could be used with a variety of active pharmaceutical ingredients for making their controlled/sustained release formulations.
Resumo:
A superior drug formulation capable of achieving efficient osteogenesis is in imperative demand for the treatment of osteoporosis. In the present study we investigated the potential of using novel risedronate-hydroxyapatite (HA) nanoparticle based formulation in an animal model of established osteoporosis. Nanoparticles of HA loaded with risedronate (NHLR) of various sizes (80-130 nm) were generated for bone targeted drug delivery. Three months after ovariectomy, 36 ovariectomized (OVX) rats were divided into 6 equal groups and treated with various doses of NHLR (500,350 and 250 mu g/kg intravenous single dose) and sodium risedronate (500 mu g/kg, intravenous single dose). Untreated OVX and sham OVX served as controls. One month after drug administration, the left tibia and femur were tested for bone mechanical properties and histology, respectively. In the right femur, bone density was measured by method based on Archimedes principle and bone porosity analyses were performed using X-ray imaging. NHLR (250 mu g/kg) showed a significant increase in bone density and reduced bone porosity when compared with OVX control. Moreover, NHLR (250 mu g/kg) significantly increased bone mechanical properties and bone quality when compared with OVX control. The results strongly suggest that the NHLR, which is a novel nanoparticle based formulation, has a therapeutic advantage over risedronate sodium monotherapy for the treatment of osteoporosis in a rat model of postmenopausal osteoporosis.
Resumo:
We develop a Markov model for a TCP CUBIC connection. Next we use it to obtain approximate expressions for throughput when there may be queuing in the network. Finally we provide the throughputs different TCP CUBIC and TCP NewReno connections obtain while sharing a channel when they may have different round trip delays and packet loss probabilities.
Resumo:
The mathematical model for diffuse fluorescence spectroscopy/imaging is represented by coupled partial differential equations (PDEs), which describe the excitation and emission light propagation in soft biological tissues. The generic closed-form solutions for these coupled PDEs are derived in this work for the case of regular geometries using the Green's function approach using both zero and extrapolated boundary conditions. The specific solutions along with the typical data types, such as integrated intensity and the mean time of flight, for various regular geometries were also derived for both time-and frequency-domain cases. (C) 2013 Optical Society of America
Resumo:
The analytical solutions for the coupled diffusion equations that are encountered in diffuse fluorescence spectroscopy/ imaging for regular geometries were compared with the well-established numerical models, which are based on the finite element method. Comparison among the analytical solutions obtained using zero boundary conditions and extrapolated boundary conditions (EBCs) was also performed. The results reveal that the analytical solutions are in close agreement with the numerical solutions, and solutions obtained using EBCs are more accurate in obtaining the mean time of flight data compared to their counterpart. The analytical solutions were also shown to be capable of providing bulk optical properties through a numerical experiment using a realistic breast model. (C) 2013 Optical Society of America
Resumo:
The goal of speech enhancement algorithms is to provide an estimate of clean speech starting from noisy observations. The often-employed cost function is the mean square error (MSE). However, the MSE can never be computed in practice. Therefore, it becomes necessary to find practical alternatives to the MSE. In image denoising problems, the cost function (also referred to as risk) is often replaced by an unbiased estimator. Motivated by this approach, we reformulate the problem of speech enhancement from the perspective of risk minimization. Some recent contributions in risk estimation have employed Stein's unbiased risk estimator (SURE) together with a parametric denoising function, which is a linear expansion of threshold/bases (LET). We show that the first-order case of SURE-LET results in a Wiener-filter type solution if the denoising function is made frequency-dependent. We also provide enhancement results obtained with both techniques and characterize the improvement by means of local as well as global SNR calculations.
Resumo:
The classical Chapman-Enskog expansion is performed for the recently proposed finite-volume formulation of lattice Boltzmann equation (LBE) method D.V. Patil, K.N. Lakshmisha, Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh, J. Comput. Phys. 228 (2009) 5262-5279]. First, a modified partial differential equation is derived from a numerical approximation of the discrete Boltzmann equation. Then, the multi-scale, small parameter expansion is followed to recover the continuity and the Navier-Stokes (NS) equations with additional error terms. The expression for apparent value of the kinematic viscosity is derived for finite-volume formulation under certain assumptions. The attenuation of a shear wave, Taylor-Green vortex flow and driven channel flow are studied to analyze the apparent viscosity relation.
Resumo:
An analytical expression is derived for calculating the rms current through the DC link capacitor in a three level inverter. The output current of the inverter is assumed to sinusoidal. Variations in the capacitor rms current with modulation index as well as line side power factor are studied. The worst case current stress on the capacitor is determined. This is required for sizing the capacitor and is useful for predicting the capacitor losses and life. The analytical expression derived is validated through simulations and experimental results at a number of operating points.
Resumo:
We consider the rotational motion of an elongated nanoscale object in a fluid under an external torque. The experimentally observed dynamics could be understood from analytical solutions of the Stokes equation, with explicit formulae derived for the dynamical states as a function of the object dimensions and the parameters defining the external torque. Under certain conditions, multiple analytical solutions to the Stokes equations exist, which have been investigated through numerical analysis of their stability against small perturbations and their sensitivity towards initial conditions. These experimental results and analytical formulae are general enough to be applicable to the rotational motion of any isolated elongated object at low Reynolds numbers, and could be useful in the design of non-spherical nanostructures for diverse applications pertaining to microfluidics and nanoscale propulsion technologies.
Resumo:
We suggest a method of studying coherence in finite-level systems coupled to the environment and use it for the Hamiltonian that has been used to describe the light-harvesting pigment-protein complex. The method works with the adiabatic states and transforms the Hamiltonian to a form in which the terms responsible for decoherence and population relaxation are separated out. Decoherence is then accounted for nonperturbatively and population relaxation using a Markovian master equation. Almost analytical results can be obtained for the seven-level system, and the calculations are very simple for systems with more levels. We apply the treatment to the seven-level system, and the results are in excellent agreement with the exact numerical results of Nalbach et al. Nalbach, Braun, and Thorwart, Phys. Rev. E 84, 041926 (2011)]. Our approach is able to account for decoherence and population relaxation separately. It is found that decoherence causes only damping of oscillations and does not lead to transfer to the reaction center. Population relaxation is necessary for efficient transfer to the reaction center, in agreement with earlier findings. Our results show that the transformation to the adiabatic basis followed by a Redfield type of approach leads to results in good agreement with exact simulation.
Resumo:
In this paper, we address a physics-based analytical model of electric-field-dependent electron mobility (mu) in a single-layer graphene sheet using the formulation of Landauer and Mc Kelvey's carrier flux approach under finite temperature and quasi-ballistic regime. The energy-dependent, near-elastic scattering rate of in-plane and out-of-plane (flexural) phonons with the electrons are considered to estimate mu over a wide range of temperature. We also demonstrate the variation of mu with carrier concentration as well as the longitudinal electric field. We find that at high electric field (>10(6) Vm(-1)), the mobility falls sharply, exhibiting the scattering between the electrons and flexural phonons. We also note here that under quasi-ballistic transport, the mobility tends to a constant value at low temperature, rather than in between T-2 and T-1 in strongly diffusive regime. Our analytical results agree well with the available experimental data, while the methodologies are put forward to estimate the other carrier-transmission-dependent transport properties.
Resumo:
We analytically study the role played by the network topology in sustaining cooperation in a society of myopic agents in an evolutionary setting. In our model, each agent plays the Prisoner's Dilemma (PD) game with its neighbors, as specified by a network. Cooperation is the incumbent strategy, whereas defectors are the mutants. Starting with a population of cooperators, some agents are switched to defection. The agents then play the PD game with their neighbors and compute their fitness. After this, an evolutionary rule, or imitation dynamic is used to update the agent strategy. A defector switches back to cooperation if it has a cooperator neighbor with higher fitness. The network is said to sustain cooperation if almost all defectors switch to cooperation. Earlier work on the sustenance of cooperation has largely consisted of simulation studies, and we seek to complement this body of work by providing analytical insight for the same. We find that in order to sustain cooperation, a network should satisfy some properties such as small average diameter, densification, and irregularity. Real-world networks have been empirically shown to exhibit these properties, and are thus candidates for the sustenance of cooperation. We also analyze some specific graphs to determine whether or not they sustain cooperation. In particular, we find that scale-free graphs belonging to a certain family sustain cooperation, whereas Erdos-Renyi random graphs do not. To the best of our knowledge, ours is the first analytical attempt to determine which networks sustain cooperation in a population of myopic agents in an evolutionary setting.