962 resultados para allele polymorphism
Resumo:
Background: Genetic polymorphisms of the TCF7L2 gene are strongly associated with large increments in type 2 diabetes risk in different populations worldwide. In this study, we aimed to confirm the effect of the TCF7L2 polymorphism rs7903146 on diabetes risk in a Brazilian population and to assess the use of this genetic marker in improving diabetes risk prediction in the general population. Methods: We genotyped the single nucleotide polymorphisms (SNP) rs7903146 of the TCF7L2 gene in 560 patients with known coronary disease enrolled in the MASS II (Medicine, Angioplasty, or Surgery Study) Trial and in 1,449 residents of Vitoria, in Southeast Brazil. The associations of this gene variant to diabetes risk and metabolic characteristics in these two different populations were analyzed. To access the potential benefit of using this marker for diabetes risk prediction in the general population we analyzed the impact of this genetic variant on a validated diabetes risk prediction tool based on clinical characteristics developed for the Brazilian general population. Results: SNP rs7903146 of the TCF7L2 gene was significantly associated with type 2 diabetes in the MASS-II population (OR = 1.57 per T allele, p = 0.0032), confirming, in the Brazilian population, previous reports of the literature. Addition of this polymorphism to an established clinical risk prediction score did not increased model accuracy (both area under ROC curve equal to 0.776). Conclusion: TCF7L2 rs7903146 T allele is associated with a 1.57 increased risk for type 2 diabetes in a Brazilian cohort of patients with known coronary heart disease. However, the inclusion of this polymorphism in a risk prediction tool developed for the general population resulted in no improvement of performance. This is the first study, to our knowledge, that has confirmed this recent association in a South American population and adds to the great consistency of this finding in studies around the world. Finally, confirming the biological association of a genetic marker does not guarantee improvement on already established screening tools based solely on demographic variables.
Resumo:
Background/Aim: Hyperhomocysteinemia due to Methylenetetrahydrofolate Reductase (MTHFR) gene, in particular the C677T (Ala222Val) polymorphism were recently associated to steatosis and fibrosis. We analyzed the frequency of MTHFR gene in a cross-sectional study of patients affected by Chronic Hepatitis C (CHC) from Northeast of Brazil. Method: One hundred seven-four untreated patients with CHC were genotyped for the C677T MTHFR. Genomic DNA was extracted from peripheral blood cells and the C677T MTHFR polymorphism was identified by PCR-RFLP. The homocysteine (Hcy) levels were determined by chemiluminescence method. All patients were negative for markers of Wilson's disease, hemochromatosis and autoimmune diseases and have current and past daily alcohol intake less than 100 g/week. Results: Among subjects infected with CHC genotype non-1 the frequency of MTHFR genotypes TT was 9.8% versus 4.4% genotype 1 (p = 0.01). Nevertheless, association was found between the MTHFR genotype TT x CT/CC polymorphism and the degree of steatosis and fibrosis in both hepatitis C genotype (p < 0.05). A significant difference was found on plasma Hcy levels in patients with steatosis regardless of HCV genotype (p = 0.03). Conclusion: Our results indicate that plasma Hcy levels is highly prevalent in subjects with chronic hepatits C with steatosis regardless of HCV genotype and vitamin deficiency. The presence of genotype TT of MTHFR C677T polymorphism was more common in CHC genotype non-1 infected patient regardless of histopathological classification and genotype TT+CT frequencies were significant in the presence of fibrosis grade 1+2 and of steatosis in CHC infected patients from the northeast of Brazil regardless of HCV genotype. The genetic susceptibility of MTHFR C677T polymorphism should be confirmed in a large population.
Resumo:
Cocaine addiction involves a number of medical, psychological and social problems. Understanding the genetic aetiology of this disorder will be essential for design of effective treatments. Dopamine-beta hydroxylase (DbH) catalyzes the conversion of dopamine to norepinephrine and could, therefore, have an influence on both cocaine action and the basal sensitivity of neurotransmitter systems to cocaine. Recently, the - 1021C> T polymorphism have been found to strongly correlated with individual variation in plasma DbH activity. To test the influence of this polymorphism on the susceptibility of cocaine addiction, we decided to genotype it in a sample of 689 cocaine addicts and 832 healthy individuals. Genotypic and allelic analyses did not show any evidence of association with cocaine addiction, even after correcting for the effect of population stratification and other possible confounders. Our results do not support a major role of the - 1021C> T polymorphism or the gene itself in the development of cocaine addiction but further examination of other variants within this gene will be necessary to completely rule out an effect.
Resumo:
The identification of genetic markers associated with chronic kidney disease (CKD) may help to predict its development. Because reduced nitric oxide (NO) bioavailability and endothelial dysfunction are involved in CKD, genetic polymorphisms in the gene encoding the enzyme involved in NO synthesis (endothelial NO synthase [eNos]) may affect the susceptibility to CKD and the development of end-stage renal disease (ESRD). We compared genotype and haplotype distributions of three relevant eNOS polymorphisms (T(-786) C in the promoter region, Glu298Asp in exon 7, and 4b/4a in intron 4) in 110 healthy control subjects and 127 ESRD patients. Genotypes for the T(-786) C and Glu298Asp polymorphisms were determined by TaqMan (R) Allele Discrimination assay and real-time polymerase chain reaction. Genotypes for the intron 4 polymorphism were determined by polymerase chain reaction and fragment separation by electrophoresis. The software program PHASE 2.1 was used to estimate the haplotypes frequencies. We considered significant a probability value of p < 0.05/number of haplotypes (p < 0.05/8 = 0.0063). We found no significant differences between groups with respect to age, ethnicity, and gender. CKD patients had higher blood pressure, total cholesterol, and creatinine levels than healthy control subjects (all p < 0.05). Genotype and allele distributions for the three eNOS polymorphisms were similar in both groups (p > 0.05). We found no significant differences in haplotype distribution between groups (p > 0.05). The lack of significant associations between eNOS polymorphisms and ESRD suggests that eNOS polymorphisms may not be relevant to the genetic component of CKD that leads to ESRD.
Resumo:
Interethnic differences exist in disease prevalence, especially with regard to cancer and cardiovascular diseases, which involve altered expression or activity of matrix metalloproteinases (MMPs). The hypothesis being tested in this study is that interethnic differences exist between blacks and whites with regard to the distribution of genetic variants of MMP polymorphisms and haplotypes. We examined the distribution of polymorphisms of MMP-2 and MMP-9 genes in 177 black and 140 white subjects. We studied the following polymorphisms: the C(-1306)T in the promoter of the MMP-2 gene, the C(-1562)T and a microsatellite -90(CA)(14-24) in the promoter, and the Q279R in exon 6 of the MMP-9 gene. We have also compared our results with those from Hapmap or Seattle SNPs Projects and estimated the haplotype frequency in these two ethnic groups. The ""C'' allele for the C(-1306)T polymorphism was more common in blacks (91.5%) than in whites (80.4%; p<0.0001). The ""T'' allele for the C(-1562)T polymorphism was more common in blacks (15.0%) than in whites (8.9%; p=0.0279), as well as the alleles with >21 repeats for the -90(CA)(14-24) were more common in blacks than in whites (61.9% in blacks and 49.3% in whites; p=0.0017). We found no interethnic differences for the Q279R polymorphism. Moreover, two haplotypes that combine ""detrimental'' alleles were found at higher frequencies in blacks than in whites (31% vs. 16.4%, respectively; p<0.05). The interethnic differences being reported here replicate those previously found with smaller number of subjects in the Hapmap or Seattle SNPs data and may help explain the higher prevalence of cancer and cardiovascular diseases in blacks compared with whites. Our findings suggest a proportional significance of these polymorphisms in each ethnic group.
Resumo:
The TP53 tumor suppressor gene codifies a protein responsible for preventing cells with genetic damage from growing and dividing by blocking cell growth or apoptosis pathways. A common single nucleotide polymorphism (SNP) in TP53 codon 72 (Arg72Pro) induces a 15-fold decrease of apoptosis-inducing ability and has been associated with susceptibility to human cancers. Recently, another TP53 SNP at codon 47 (Pro47Ser) was reported to have a low apoptosis-inducing ability; however, there are no association studies between this SNP and cancer. Aiming to study the role of TP53 Pro47Ser and Arg72Pro on glioma susceptibility and oncologic prognosis of patients, we investigated the genotype distribution of these SNPs in 94 gliomas (81 astrocytomas, 8 ependymomas and 5 oligodendrogliomas) and in 100 healthy subjects by the polymerase chain reaction-restriction fragment length polymorphism approach. Chi-square and Fisher exact test comparisons for genotype distributions and allele frequencies did not reveal any significant difference between patients and control groups. Overall and disease-free survivals were calculated by the Kaplan-Meier method, and the log-rank test was used for comparisons, but no significant statistical difference was observed between the two groups. Our data suggest that TP53 Pro47Ser and Arg72Pro SNPs are not involved either in susceptibility to developing gliomas or in patient survival, at least in the Brazilian population.
Resumo:
The p53 tumor suppressor gene is the most frequently mutated gene in human cancer; this gene is mutated in up to 50% of human tumors. It has a critical role in the cell cycle, apoptosis and cell senescence, and it participates in many crucial physiological and pathological processes. Polymorphisms of p53 have been suggested to be associated with genetically determined susceptibility in various types of cancer. Another process involved with the development and progression of tumors is DNA hypermethylation. Aberrant methylation of the promoter is an alternative epigenetic change in genetic mechanisms, leading to tumor suppressor gene inactivation. In the present study, we examined the TP53 Arg72Pro and Pro47Ser polymorphisms using PCR-RFLP and the pattern of methylation of the p53 gene by methylation-specific PCR in 90 extra-axial brain tumor samples. Patients who had the allele Pro of the TP53 Arg72Pro polymorphism had an increased risk of tumor development ( odds ratio, OR = 3.23; confidence interval at 95%, 95% CI = 1.71-6.08; P = 0.003), as did the allele Ser of TP53 Pro47Ser polymorphism (OR = 1.28; 95% CI = 0.03-2.10; P = 0.01). Comparison of overall survival of patients did not show significant differences. In the analysis of DNA methylation, we observed that 37.5% of meningiomas, 30% of schwannomas and 52.6% of metastases were hypermethylated, suggesting that methylation is important for tumor progression. We suggest that TP53 Pro47Ser and Arg72Pro polymorphisms and DNA hypermethylation are involved in susceptibility for developing extra-axial brain tumors.
Resumo:
About 95% of HTLV-1 infected patients remain asymptomatic throughout life, and the risk factors associated with the development of related diseases, such as HAM/TSP and ATL, are not fully understood. The human leukocyte antigen-G molecule (HLA-G), a nonclassical HLA class I molecule encoded by MHC, is expressed in several pathological conditions, including viral infection, and is related to immunosuppressive effects that allow the virus-infected cells to escape the antiviral defense of the host. The 14-bp insertion/deletion polymorphism of exon 8 HLA-G gene influences the stability of the transcripts and could be related to HTLV-1-infected cell protection and to the increase of proviral load. The present study analyzed by conventional PCR the 14-bp insertion/deletion polymorphism of exon 8 HLA-G gene in 150 unrelated healthy subjects, 82 HTLV-1 infected patients with symptoms (33 ATL and 49 HAM), and 56 asymptomatic HTLV-1 infected patients (HAC). In addition, the proviral load was determined by quantitative real-time PCR in all infected groups and correlated with 14-bp insertion/deletion genotypes. The heterozygote genotype frequencies were significantly higher in HAM, in the symptomatic group, and in infected patients compared to control (p < 0.05). The proviral load was higher in the symptomatic group than the HAC group (p < 0.0005). The comparison of proviral load and genotypes showed that -14-bp/-14-bp genotype had a higher proviral load than +14-bp/-14-bp and +14-bp/+14-bp genotypes. Although HLA-G 14-bp polymorphism does not appear to be associated
Resumo:
The aim of the present study was to examine the impact of polymorphisms in prostate-specific antigen (PSA) and androgen-related genes (AR, CYP17, and CYP19) on prostate cancer (PCa) risk in selected high-risk patients who underwent prostate biopsy. Blood samples and prostate tissues were obtained for DNA analysis. Single-nucleotide polymorphisms in the 50-untranslated regions (UTRs) of the PSA (substitution A > G at position -158) and CYP17 (substitution T > C at 50-UTR) genes were detected by polymerase chain reaction (PCR)-restriction fragment length polymorphism assays. The CAG and TTTA repeats in the AR and CYP19 genes, respectively, were genotyped by PCR-based GeneScan analysis. Patients with the GG genotype of the PSA gene had a higher risk of PCa than those with the AG or AA genotype (OR = 3.79, p = 0.00138). The AA genotype was associated with lower PSA levels (6.44 +/- 1.64 ng/mL) compared with genotypes having at least one G allele (10.44 +/- 10.06 ng/mL) (p = 0.0687, 95% CI - 0.3146 to 8.315, unpaired t-test). The multivariate analysis confirmed the association between PSA levels and PSA genotypes (AA vs. AG+GG; chi(2) = 0.0482) and CYP19 (short alleles homozygous vs. at least one long allele; chi(2) = 0.0110) genotypes. Genetic instability at the AR locus leading to somatic mosaicism was detected in one PCa patient by comparing the length of AR CAG repeats in matched peripheral blood and prostate biopsy cores. Taken together, these findings suggest that the PSA genotype should be a clinically relevant biomarker to predict the PCa risk.
Resumo:
Imprinted inactivation of the paternal X chromosome in marsupials is the primordial mechanism of dosage compensation for X-linked genes between females and males in Therians. In Eutherian mammals, X chromosome inactivation (XCI) evolved into a random process in cells from the embryo proper, where either the maternal or paternal X can be inactivated. However, species like mouse and bovine maintained imprinted XCI exclusively in extraembryonic tissues. The existence of imprinted XCI in humans remains controversial, with studies based on the analyses of only one or two X-linked genes in different extraembryonic tissues. Here we readdress this issue in human term placenta by performing a robust analysis of allele-specific expression of 22 X-linked genes, including XIST, using 27 SNPs in transcribed regions. We show that XCI is random in human placenta, and that this organ is arranged in relatively large patches of cells with either maternal or paternal inactive X. In addition, this analysis indicated heterogeneous maintenance of gene silencing along the inactive X, which combined with the extensive mosaicism found in placenta, can explain the lack of agreement among previous studies. Our results illustrate the differences of XCI mechanism between humans and mice, and highlight the importance of addressing the issue of imprinted XCI in other species in order to understand the evolution of dosage compensation in placental mammals.
Resumo:
Background: The Trypanosoma cruzi genome was sequenced from a hybrid strain (CL Brener). However, high allelic variation and the repetitive nature of the genome have prevented the complete linear sequence of chromosomes being determined. Determining the full complement of chromosomes and establishing syntenic groups will be important in defining the structure of T. cruzi chromosomes. A large amount of information is now available for T. cruzi and Trypanosoma brucei, providing the opportunity to compare and describe the overall patterns of chromosomal evolution in these parasites. Methodology/Principal Findings: The genome sizes, repetitive DNA contents, and the numbers and sizes of chromosomes of nine strains of T. cruzi from four lineages (TcI, TcII, TcV and TcVI) were determined. The genome of the TcI group was statistically smaller than other lineages, with the exception of the TcI isolate Tc1161 (Jose-IMT). Satellite DNA content was correlated with genome size for all isolates, but this was not accompanied by simultaneous amplification of retrotransposons. Regardless of chromosomal polymorphism, large syntenic groups are conserved among T. cruzi lineages. Duplicated chromosome-sized regions were identified and could be retained as paralogous loci, increasing the dosage of several genes. By comparing T. cruzi and T. brucei chromosomes, homologous chromosomal regions in T. brucei were identified. Chromosomes Tb9 and Tb11 of T. brucei share regions of syntenic homology with three and six T. cruzi chromosomal bands, respectively. Conclusions: Despite genome size variation and karyotype polymorphism, T. cruzi lineages exhibit conservation of chromosome structure. Several syntenic groups are conserved among all isolates analyzed in this study. The syntenic regions are larger than expected if rearrangements occur randomly, suggesting that they are conserved owing to positive selection. Mapping of the syntenic regions on T. cruzi chromosomal bands provides evidence for the occurrence of fusion and split events involving T. brucei and T. cruzi chromosomes.
Resumo:
Background: The malaria parasite Plasmodium falciparum exhibits abundant genetic diversity, and this diversity is key to its success as a pathogen. Previous efforts to study genetic diversity in P. falciparum have begun to elucidate the demographic history of the species, as well as patterns of population structure and patterns of linkage disequilibrium within its genome. Such studies will be greatly enhanced by new genomic tools and recent large-scale efforts to map genomic variation. To that end, we have developed a high throughput single nucleotide polymorphism (SNP) genotyping platform for P. falciparum. Results: Using an Affymetrix 3,000 SNP assay array, we found roughly half the assays (1,638) yielded high quality, 100% accurate genotyping calls for both major and minor SNP alleles. Genotype data from 76 global isolates confirm significant genetic differentiation among continental populations and varying levels of SNP diversity and linkage disequilibrium according to geographic location and local epidemiological factors. We further discovered that nonsynonymous and silent (synonymous or noncoding) SNPs differ with respect to within-population diversity, interpopulation differentiation, and the degree to which allele frequencies are correlated between populations. Conclusions: The distinct population profile of nonsynonymous variants indicates that natural selection has a significant influence on genomic diversity in P. falciparum, and that many of these changes may reflect functional variants deserving of follow-up study. Our analysis demonstrates the potential for new high-throughput genotyping technologies to enhance studies of population structure, natural selection, and ultimately enable genome-wide association studies in P. falciparum to find genes underlying key phenotypic traits.
Resumo:
Background: The ideal malaria parasite populations for initial mapping of genomic regions contributing to phenotypes such as drug resistance and virulence, through genome-wide association studies, are those with high genetic diversity, allowing for numerous informative markers, and rare meiotic recombination, allowing for strong linkage disequilibrium (LD) between markers and phenotype-determining loci. However, levels of genetic diversity and LD in field populations of the major human malaria parasite P. vivax remain little characterized. Results: We examined single-nucleotide polymorphisms (SNPs) and LD patterns across a 100-kb chromosome segment of P. vivax in 238 field isolates from areas of low to moderate malaria endemicity in South America and Asia, where LD tends to be more extensive than in holoendemic populations, and in two monkey-adapted strains (Salvador-I, from El Salvador, and Belem, from Brazil). We found varying levels of SNP diversity and LD across populations, with the highest diversity and strongest LD in the area of lowest malaria transmission. We found several clusters of contiguous markers with rare meiotic recombination and characterized a relatively conserved haplotype structure among populations, suggesting the existence of recombination hotspots in the genome region analyzed. Both silent and nonsynonymous SNPs revealed substantial between-population differentiation, which accounted for similar to 40% of the overall genetic diversity observed. Although parasites clustered according to their continental origin, we found evidence for substructure within the Brazilian population of P. vivax. We also explored between-population differentiation patterns revealed by loci putatively affected by natural selection and found marked geographic variation in frequencies of nucleotide substitutions at the pvmdr-1 locus, putatively associated with drug resistance. Conclusion: These findings support the feasibility of genome-wide association studies in carefully selected populations of P. vivax, using relatively low densities of markers, but underscore the risk of false positives caused by population structure at both local and regional levels.
Resumo:
The structure of a complex between hydrated DNA and a non-cationic lipid is studied, including its phase diagram. The complex is spontaneously formed by adding DNA fragments (ca. 150 base pairs in length) to non-cationic lipids and water. The self-assembly process often leads to highly ordered structures. The structures were studied by combining X-ray scattering, fluorescence and polarized microscopy, as well as freeze-fracture experiments with transmission electron microscopy. We observe a significant increase of the smectic order as DNA is incorporated into the water layers of the lamellar host phase, and stabilization of single phase domains for large amounts of DNA. The effect of confinement on DNA ordering is investigated by varying the water content, following three dilution lines. A rich polymorphism is found, ranging from weakly correlated DNA-DNA in-plane organizations to highly ordered structures, where transmembrane correlations lead to the formation of columnar rectangular and columnar hexagonal superlattices of nucleotides embedded between lipid lamellae. From these observations, we suggest that addition of DNA to the lamellar phase significantly restricts membrane fluctuations above a certain concentration and helps the formation of the lipoplex. The alteration of membrane steric interactions, together with the appearance of interfacial interactions between membranes and DNA molecules may be a relevant mechanism for the emergence of highly ordered structures in the concentrated regime.
Resumo:
The Bell-Lavis model for liquid water is investigated through numerical simulations. The lattice-gas model on a triangular lattice presents orientational states and is known to present a highly bonded low density phase and a loosely bonded high density phase. We show that the model liquid-liquid transition is continuous, in contradiction with mean-field results on the Husimi cactus and from the cluster variational method. We define an order parameter which allows interpretation of the transition as an order-disorder transition of the bond network. Our results indicate that the order-disorder transition is in the Ising universality class. Previous proposal of an Ehrenfest second order transition is discarded. A detailed investigation of anomalous properties has also been undertaken. The line of density maxima in the HDL phase is stabilized by fluctuations, absent in the mean-field solution. (C) 2009 American Institute of Physics. [doi:10.1063/1.3253297]