981 resultados para alkaline earth metals


Relevância:

30.00% 30.00%

Publicador:

Resumo:

From Philosophical transactions for 1808, v. 98, p. 1-44, 341-346.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the different adsorption properties of H and alkali metal atoms on the basal plane of graphite are studied and compared using a density functional method on the same model chemistry level. The results show that H prefers the on-top site while alkali metals favor the middle hollow site of graphite basal plane due to the unique electronic structures of H, alkali metals, and graphite. H has a higher electronegativity than carbon, preferring to form a covalent bond with C atoms, whereas alkaline metals have lower electronegativity, tending to adsorb on the highest electrostatic potential sites. During adsorption, there are more charges transferred from alkali metal to graphite than from H to graphite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediments, mosses and algae, collected from lake catchments of the Larsemann Hills, East Antarctica, were analysed to establish baseline levels of trace metals (Ag, As, Cd, Co, Cr, Cu, Ni, Sb, Pb, Se, V and Zn), and to quantify the extent of trace metal pollution in the area. Both impacted and non-impacted sites were included in the study. Four different leaching solutions (1 M MgCl2, 1 M CH3COONH4, 1 M NH4NO3, and 0.3 N HCl) were tested on the fine fraction (< 63 mu m) of the sediments to extract the mobile fraction of trace metals derived from human impact and from weathering of basement lithologies. Results of these tests indicate that dilute HCl partly dissolves primary minerals present in the sediment, thus leading to an overestimate of the mobile trace metal fraction. Concentrations of trace metals released using the other 3 procedures indicate negligible levels of anthropogenic contribution to the trace metal budget. Data derived from this study and a thorough characterisation of the site allowed the authors to define natural baseline levels of trace metals in sediments, mosses and algae, and their spatial variability across the area. The results show that, with a few notable exceptions, human activities at the research stations have contributed negligible levels (lower than natural variability) of trace metals to the Larsemann Hills ecosystem. This study further demonstrates that anthropogenic sources of trace metals can be correctly identified and quantified only if natural baselines, their variability, and processes controlling the mobility of trace metals in the ecosystem, have been fully characterised. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high-pressure and temperature investigations on transition metals, metal doped-oxide system, nanocrystalline materials are presented in this dissertation. The metal-doped oxide systems are technologically important because of their applications, e.g. LSC, opto electronic applications, luminescence from lasers, etc., and from the earth sciences point of view, e.g. the study of trace elements in the MgO-SiO2 system, which accounts for 50% of the Earth's chondritic model. We have carried out thorough investigations on Cr2O3 and on chromium bearing oxides at high PT-conditions using in situ X-ray diffractometry and florescence spectroscopy techniques. Having obtained exciting results, an attempt to focus on the mechanism of the coordination of transition metals in oxides has been made. Additionally, the florescence from the metals in host oxides was found to be helpful to obtain information on structural variations like changes in the coordination of the doped element, formation of new phases, the diffusion processes. The possible reactions taking place at extreme conditions in the MgO-SiO2 system has been observed using florescence as markers. A new heating assemblage has been designed and fabricated for a precise determination of temperature at high pressures. An equation combining pressure shifts of ruby wavelength and temperature has been proposed. We observed that the compressibility of nanocrystalline material (MgO and Ni) is independent of crystallite size. A reduction in the transition pressure of nanocrystalline ceria at high-pressure has been observed as compare to the corresponding bulk material. ^