943 resultados para adrenergic receptors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract RATIONALE: Previous studies have shown that orexin-1/hypocretin-1 receptors play a role in self-administration and cue-induced reinstatement of food, drug, and ethanol seeking. In the current study, we examined the role of orexin-1/hypocretin-1 receptors in operant self-administration of ethanol and sucrose and in yohimbine-induced reinstatement of ethanol and sucrose seeking. MATERIALS AND METHODS: Rats were trained to self-administer either 10% ethanol or 5% sucrose (30 min/day). The orexin-1 receptor antagonist SB334867 (0, 5, 10, 15, 20 mg/kg, i.p.) was administered 30 min before the operant self-administration sessions. After these experiments, the operant self-administration behaviors were extinguished in both the ethanol and sucrose-trained rats. Upon reaching extinction criteria, SB334867 (0, 5, 10 mg/kg, i.p.) was administered 30 min before yohimbine (0 or 2 mg/kg, i.p.). In a separate experiment, the effect of SB334867 (0, 15, or 20 mg/kg, i.p.) on general locomotor activity was determined using the open-field test. RESULTS: The orexin-1 receptor antagonist, SB334867 (10, 15 and 20 mg/kg) decreased operant self-administration of 10% ethanol but not 5% sucrose self-administration. Furthermore, SB334867 (5 and 10 mg/kg) significantly decreased yohimbine-induced reinstatement of both ethanol and sucrose seeking. SB334867 did not significantly affect locomotor activity measured using the open-field test. CONCLUSIONS: The results suggest that inhibition of OX-1/Hcrt-1 receptors modulates operant ethanol self-administration and also plays a significant role in yohimbine-induced reinstatement of both ethanol and sucrose seeking in rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibroblast growth factor receptors (FGFRs) play diverse roles in the control of cell proliferation, cell differentiation, angiogenesis and development. Activating the mutations of FGFRs in the germline has long been known to cause a variety of skeletal developmental disorders, but it is only recently that a similar spectrum of somatic FGFR mutations has been associated with human cancers. Many of these somatic mutations are gain-of-function and oncogenic and create dependencies in tumor cell lines harboring such mutations. A combination of knockdown studies and pharmaceutical inhibition in preclinical models has further substantiated genomically altered FGFR as a therapeutic target in cancer, and the oncology community is responding with clinical trials evaluating multikinase inhibitors with anti-FGFR activity and a new generation of specific pan-FGFR inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purine compounds, such as caffeine, have many health-promoting properties and have proven to be beneficial in treating a number of different conditions. Theacrine, a purine alkaloid structurally similar to caffeine and abundantly present in Camellia kucha, has recently become of interest as a potential therapeutic compound. In the present study, theacrine was tested using a rodent behavioral model to investigate the effects of the drug on locomotor activity. Long Evans rats were injected with theacrine (24 or 48 mg/kg, i.p.) and activity levels were measured. Results showed that the highest dose of theacrine (48 mg/kg, i.p.) significantly increased locomotor activity compared to control animals and activity remained elevated throughout the duration of the session. To test for the involvement of adenosine receptors underlying theacrine's motor-activating properties, rats were administered a cocktail of the adenosine A₁ agonist, N⁶-cyclopentyladenosine (CPA; 0.1 mg/kg, i.p.) and A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680; 0.2 mg/kg, i.p.). Pre-treatment with theacrine significantly attenuated the motor depression induced by the adenosine receptor agonists, indicating that theacrine is likely acting as an adenosine receptor antagonist. Next, we examined the role of DA D₁ and D₂ receptor antagonism on theacrine-induced hyperlocomotion. Both antagonists, D₁R SCH23390 (0.1 or 0.05 mg/kg, i.p.) and D₂R eticlopride (0.1 mg/kg, i.p.), significantly reduced theacrine-stimulated activity indicating that this behavioral response, at least in part, is mediated by DA receptors. In order to investigate the brain region where theacrine may be acting, the drug (10 or 20 μg) was infused bilaterally into nucleus accumbens (NAc). Theacrine enhanced activity levels in a dose-dependent manner, implicating a role of the NAc in modulating theacrine's effects on locomotion. In addition, theacrine did not induce locomotor sensitization or tolerance after chronic exposure. Taken together, these findings demonstrate that theacrine significantly enhances activity; an effect which is mediated by both the adenosinergic and dopaminergic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Addictive drugs can activate systems involved in normal reward-related learning, creating long-lasting memories of the drug's reinforcing effects and the environmental cues surrounding the experience. These memories significantly contribute to the maintenance of compulsive drug use as well as cue-induced relapse which can occur even after long periods of abstinence. Synaptic plasticity is thought to be a prominent molecular mechanism underlying drug-induced learning and memories. Ethanol and nicotine are both widely abused drugs that share a common molecular target in the brain, the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are ligand-gated ion channels that are vastly distributed throughout the brain and play a key role in synaptic neurotransmission. In this review, we will delineate the role of nAChRs in the development of ethanol and nicotine addiction. We will characterize both ethanol and nicotine's effects on nAChR-mediated synaptic transmission and plasticity in several key brain areas that are important for addiction. Finally, we will discuss some of the behavioral outcomes of drug-induced synaptic plasticity in animal models. An understanding of the molecular and cellular changes that occur following administration of ethanol and nicotine will lead to better therapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The cornea has an important role in vision, is highly innervated and many neurotransmitter receptors are present, e.g., muscarine, melatonin, and dopamine receptors. γ-aminobutyric acid (GABA) is the most important inhibitory neurotransmitter in the retina and central nervous system, but it is unknown whether GABA receptors are present in cornea. The aim of this study was to determine if GABA receptors are located in chick cornea. Methods: Corneal tissues were collected from 25, 12-day-old chicks. Real time PCR, western blot, and immunohistochemistry were used to determine whether alpha1 GABAA, GABAB, and rho1 GABAC receptors were expressed and located in chick cornea. Results: Corneal tissue was positive for alpha1 GABAA and rho1 GABAC receptor mRNA (PCR) and protein (western blot) expression but was negative for GABAB receptor mRNA and protein. Alpha1 GABAA and rho1 GABAC receptor protein labeling was observed in the corneal epithelium using immunohistochemistry. Conclusions: These investigations clearly show that chick cornea possesses alpha1 GABAA, and rho1 GABAC receptors, but not GABAB receptors. The purpose of the alpha1 GABAA and rho1 GABAC receptors in cornea is a fascinating unexplored question.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migraine is a debilitating neurovascular disorder, with a substantial genetic component. The exact cause of a migraine attack is unknown; however cortical hyperexcitability is thought to play a role. As Gamma-aminobutyric Acid (GABA) is the major inhibitory neurotransmitter in the brain, malfunctioning of this system may be a cause of the hyperexcitability. To date, there has been limited research examining the gene expression or genetics of GABA receptors in relation to migraine. The aim of our study was to determine if GABA receptors play a role in migraine by investigating their gene expression using profile in migraine affected individuals and non-affected controls by Q-PCR. Gene expression of GABA(A) receptor subunit isoforms (GABRA3, GABRB3, GABRQ) and GABA(B) receptor 2 (GABBR2) was quantified in mRNA obtained from peripheral blood leukocytes from 28 migraine subjects and 22 healthy control subjects. Analysis of results showed that two of the tested genes, GABRA3 and GABBR2, were significantly down regulated in migraineurs (P=0.018; P=0.017), compared to controls. Results from the other tested genes did not show significant gene expression variation. The results indicate that there may be specific GABA receptor gene expression variation in migraine, particularly involving the GABRA3 and GABBR2 genes. This study also identifies GABRA3 and GABBR2 as potential biomarkers to select migraineurs that may be more responsive to GABA agonists with future investigations in this area warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Migraine is a neurological disorder characterized by recurrent attacks of severe headache, affecting around 12% of Caucasian populations. It is well known that migraine has a strong genetic component, although the number and type of genes involved is still unclear. Prior linkage studies have reported mapping of a migraine gene to chromosome Xq 24–28, a region containing a cluster of genes for GABA A receptors (GABRE, GABRA3, GABRQ), which are potential candidate genes for migraine. The GABA neurotransmitter has been implicated in migraine pathophysiology previously; however its exact role has not yet been established, although GABA receptors agonists have been the target of therapeutic developments. The aim of the present research is to investigate the role of the potential candidate genes reported on chromosome Xq 24–28 region in migraine susceptibility. In this study, we have focused on the subunit GABA A receptors type ε (GABRE) and type θ (GABRQ) genes and their involvement in migraine. Methods We have performed an association analysis in a large population of case-controls (275 unrelated Caucasian migraineurs versus 275 controls) examining a set of 3 single nucleotide polymorphisms (SNPs) in the coding region (exons 3, 5 and 9) of the GABRE gene and also the I478F coding variant of the GABRQ gene. Results Our study did not show any association between the examined SNPs in our test population (P > 0.05). Conclusion Although these particular GABA receptor genes did not show positive association, further studies are necessary to consider the role of other GABA receptor genes in migraine susceptibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migraine is a common genetically linked neurovascular disorder. Approximately ~12% of the Caucasian population are affected including 18% of adult women and 6% of adult men (1, 2). A notable female bias is observed in migraine prevalence studies with females affected ~3 times more than males and is credited to differences in hormone levels arising from reproductive achievements. Migraine is extremely debilitating with wide-ranging socioeconomic impact significantly affecting people's health and quality of life. A number of neurotransmitter systems have been implicated in migraine, the most studied include the serotonergic and dopaminergic systems. Extensive genetic research has been carried out to identify genetic variants that may alter the activity of a number of genes involved in synthesis and transport of neurotransmitters of these systems. The biology of the Glutamatergic system in migraine is the least studied however there is mounting evidence that its constituents could contribute to migraine. The discovery of antagonists that selectively block glutamate receptors has enabled studies on the physiologic role of glutamate, on one hand, and opened new perspectives pertaining to the potential therapeutic applications of glutamate receptor antagonists in diverse neurologic diseases. In this brief review, we discuss the biology of the Glutamatergic system in migraine outlining recent findings that support a role for altered Glutamatergic neurotransmission from biochemical and genetic studies in the manifestation of migraine and the implications of this on migraine treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The retinal pigment epithelium (RPE) is a multifunctional, monolayer of cells located between the neural retina and the choroicapillaris. γ-Aminobutyric acid (GABA) is the most important inhibitory neurotransmitter in the retina and GABA receptors are known to be present in chick retina, sclera and cornea. There is a report of genes involved in GABA receptor signaling being expressed in human RPE, however, whether GABA receptors are present in chick RPE is unknown. Methods: Real time PCR and western blot were used to determine the expression of GABA receptors (alpha1 GABAA, GABABR2, and rho1 GABAC receptors) in isolated chicken RPE. Immunofluorescence using antibodies against one of the GABA receptor sub-types was used to determine receptor localization. Results: Both real-time PCR and western blot demonstrated that alpha1 GABAA, GABABR2 and rho1 GABAC receptors were expressed in isolated chick RPE. Immunofluorescence further demonstrated that GABA receptors were localized to the cell membrane and plasma of RPE cells. Conclusions: Alpha1 GABAA, GABABR2 and rho1 GABAC receptors were expressed in chick RPE. The purpose of the GABA receptors within the RPE remains to be explored.