993 resultados para adaptive technologies
Resumo:
The Vehicle-to-Grid (V2G) concept is based on the newly developed and marketed technologies of hybrid petrol-electric vehicles, most notably represented by the Toyota Prius, in combination with significant structural changes to the world's energy economy, and the growing strain on electricity networks. The work described in this presentation focuses on the market and economic impacts of grid connected vehicles. We investigate price reduction effects and transmission system expansion cost reduction. We modelled a large numbers of plug-in-hybrid vehicle batteries by aggregating them into a virtual pumped-storage power station at the Australian national electricity market's (NEM) region level. The virtual power station concept models a centralised control for dispatching (operating) the aggregated electricity supply/demand capabilities of a large number of vehicles and their batteries. The actual level of output could be controlled by human or automated agents to either charge or discharge from/into the power grid. As previously mentioned the impacts of widespread deployments of this technology are likely to be economic, environmental and physical.
Resumo:
The economics of supporting learning has seen institutional encouragement of a wide range of blended learning initiatives in face to face and online teaching and learning. This has become one of the key drivers for the adoption of technology in teaching, in a manner occassionally guilty of putting the cart before the horse. Learning spaces are increasingly equipped with a dizzying array of technological options testifying to institutional and governmental investment and commitment in supporting face to face blended learning (QUT, 2011, C/4.2). Yet innovation within traditional learning and teaching models faces a number of challenges both at an institutional level and at the teaching coal face. Web 2.0 technologies present a vast array of opportunities to harness and capture the attention of students in engaging learning opportunitites. This presentation will explore technologies supportive of active learning pedagogies.
Resumo:
We examined acute molecular responses in skeletal muscle to repeated sprint and resistance exercise bouts. Six men [age, 24.7 ± 6.3 yr; body mass, 81.6 ± 7.3 kg; peak oxygen uptake, 47 ± 9.9 ml·kg -1 ·min -1; one repetition maximum (1-RM) leg extension 92.2 ± 12.5 kg; means ± SD] were randomly assigned to trials consisting of either resistance exercise (8 × 5 leg extension, 80% 1-RM) followed by repeated sprints (10 × 6 s, 0.75 N·m torque·kg -1) or vice-versa. Muscle biopsies from vastus lateralis were obtained at rest, 15 min after each exercise bout, and following 3-h recovery to determine early signaling and mRNA responses. There was divergent exercise order-dependent phosphorylation of p70 S6K (S6K). Specifically, initial resistance exercise increased S6K phosphorylation (?75% P < 0.05), but there was no effect when resistance exercise was undertaken after sprints. Exercise decreased IGF-I mRNA following 3-h recovery (?50%, P = 0.06) independent of order, while muscle RING finger mRNA was elevated with a moderate exercise order effect (P < 0.01). When resistance exercise was followed by repeated sprints PGC-1? mRNA was increased (REX1-SPR2; P = 0.02) with a modest distinction between exercise orders. Repeated sprints may promote acute interference on resistance exercise responses by attenuating translation initiation signaling and exacerbating ubiquitin ligase expression. Indeed, repeated sprints appear to generate the overriding acute exercise-induced response when undertaking concurrent repeated sprint and resistance exercise. Accordingly, we suggest that sprint-activities are isolated from resistance training and that adequate recovery time is considered within periodized training plans that incorporate these divergent exercise modes.
Resumo:
PURPOSE: Regulation of skeletal muscle mass is highly dependent on contractile loading. The purpose of this study was to examine changes in growth factor and inflammatory pathways following high-frequency resistance training. METHODS: Using a novel design in which male Sprague-Dawley rats undertook a "stacked" resistance training protocol designed to generate a summation of transient exercise-induced signaling responses (four bouts of three sets × 10 repetitions of squat exercise, separated by 3 h of recovery), we determined the effects of high training frequency on signaling pathways and transcriptional activity regulating muscle mass. RESULTS: The stacked training regimen resulted in acute suppression of insulin-like growth factor 1 mRNA abundance (P < 0.05) and Akt phosphorylation (P < 0.05), an effect that persisted 48 h after the final training bout. Conversely, stacked training elicited a coordinated increase in the expression of tumor necrosis factor alpha, inhibitor kappa B kinase alpha/beta activity (P < 0.05), and p38 mitogen-activated protein kinase phosphorylation (P < 0.05) at 3 h after each training bout. In addition, the stacked series of resistance exercise bouts induced an increase in p70 S6 kinase phosphorylation 3 h after bouts ×3 and ×4, independent of the phosphorylation state of Akt. CONCLUSIONS: Our results indicate that high resistance training frequency extends the transient activation of inflammatory signaling cascades, concomitant with persistent suppression of key mediators of anabolic responses. We provide novel insights into the effects of the timing of exercise-induced overload and recovery on signal transduction pathways and transcriptional activity regulating skeletal muscle mass in vivo.
Resumo:
Skeletal muscle is a malleable tissue capable of altering the type and amount of protein in response to disruptions to cellular homeostasis. The process of exercise-induced adaptation in skeletal muscle involves a multitude of signalling mechanisms initiating replication of specific DNA genetic sequences, enabling subsequent translation of the genetic message and ultimately generating a series of amino acids that form new proteins. The functional consequences of these adaptations are determined by training volume, intensity and frequency, and the half-life of the protein. Moreover, many features of the training adaptation are specific to the type of stimulus, such as the mode of exercise. Prolonged endurance training elicits a variety of metabolic and morphological changes, including mitochondrial biogenesis, fast-to-slow fibre-type transformation and substrate metabolism. In contrast, heavy resistance exercise stimulates synthesis of contractile proteins responsible for muscle hypertrophy and increases in maximal contractile force output. Concomitant with the vastly different functional outcomes induced by these diverse exercise modes, the genetic and molecular mechanisms of adaptation are distinct. With recent advances in technology, it is now possible to study the effects of various training interventions on a variety of signalling proteins and early-response genes in skeletal muscle. Although it cannot presently be claimed that such scientific endeavours have influenced the training practices of elite athletes, these new and exciting technologies have provided insight into how current training techniques result in specific muscular adaptations, and may ultimately provide clues for future and novel training methodologies. Greater knowledge of the mechanisms and interaction of exercise-induced adaptive pathways in skeletal muscle is important for our understanding of the aetiology of disease, maintenance of metabolic and functional capacity with aging, and training for athletic performance. This article highlights the effects of exercise on molecular and genetic mechanisms of training adaptation in skeletal muscle.
Resumo:
Re-programming of gene expression is fundamental for skeletal muscle adaptations in response to endurance exercise. This study investigated the time-course dependent changes in the muscular transcriptome following an endurance exercise trial consisting of 1 h of intense cycling immediately followed by 1 h of intense running. Skeletal muscle samples were taken at baseline, 3 h, 48 h, and 96 h post-exercise from eight healthy, endurance-trained, male individuals. RNA was extracted from muscle. Differential gene expression was evaluated using Illumina microarrays and validated with qPCR. Gene set enrichment analysis identified enriched molecular signatures chosen from the Molecular Signatures Database. Three h post-exercise, 102 gene sets were up-regulated [family wise error rate (FWER), P < 0.05]; including groups of genes related with leukocyte migration, immune and chaperone activation, and cyclic AMP responsive element binding protein (CREB) 1-signaling. Forty-eight h post-exercise, among 19 enriched gene sets (FWER, P < 0.05), two gene sets related to actin cytoskeleton remodeling were up-regulated. Ninety-six h post-exercise, 83 gene sets were enriched (FWER, P < 0.05), 80 of which were up-regulated; including gene groups related to chemokine signaling, cell stress management, and extracellular matrix remodeling. These data provide comprehensive insights into the molecular pathways involved in acute stress, recovery, and adaptive muscular responses to endurance exercise. The novel 96 h post-exercise transcriptome indicates substantial transcriptional activity, potentially associated with the prolonged presence of leukocytes in the muscles. This suggests that muscular recovery, from a transcriptional perspective, is incomplete 96 h after endurance exercise involving muscle damage.
Resumo:
Background Trials of new technologies to remotely monitor for signs and symptoms of worsening heart failure are continually emerging. The extent to which technological differences impact the effectiveness of non-invasive remote monitoring for heart failure management is unknown. Objective To examine the effect of specific technology used for non-invasive remote monitoring of people with heart failure on all-cause mortality and heart failure-related hospitalisations. Methods A sub-analysis of a large systematic review and meta-analysis was conducted. Studies were stratified according to the specific type of technology used and separate meta-analyses were performed. Four different types of non-invasive remote monitoring technologies were identified including structured telephone calls, videophone, interactive voice response devices and telemonitoring. Results Only structured telephone calls and telemonitoring were effective in reducing the risk of all-cause mortality (RR 0.87; 95% CI=0.75-1.01; p=0.06 and 0.62; 95% CI=0.50-0.77; p<0.0001) and heart failure-related hospitalisations (RR 0.77; 95% CI=0.68-0.87; p<0.001) and 0.75; 95% CI=0.63-0.91; p=0.003). More research data is required for videophone and interactive voice response technologies. Conclusions This sub-analysis identified that only two of the four specific technologies used for non-invasive remote monitoring in heart failure improved outcomes. When results of studies that involved these disparate technologies were combined in previous meta-analyses, significant improvements in outcomes were identified. As such, this study has highlighted implications for future meta-analyses of randomised controlled trials focused on evaluating the effectiveness of remote monitoring in heart failure.
Resumo:
Several studies published in the last few decades have demonstrated a low price-elasticity for residential water use. In particular, it has been shown that there is a quantity of water demanded that remains constant regardless of prices and other economic factors. In this research, we characterise residential water demand based on a Stone-Geary utility function. This specification is not only theory-compatible but can also explicitly model a minimum level of consumption not dependent on prices or income. This is described as minimum threshold or nondiscretionary water use. Additionally, the Stone-Geary framework is used to model the subsistence level of water consumption that is dependent on the temporal evolution of consumer habits and stock of physical capital. The main aim of this study is to analyse the impact of water-saving habits and water-efficient technologies on residential water demand, while additionally focusing attention on nondiscretionary uses. This is informed by an empirical application using data from a survey conducted among residents of Brisbane City Council, Australia. The results will be especially useful in the design of water tariffs and other water-saving policies.
Resumo:
Internet-connected tablets and smart phones are being used increasingly by young children. Little is known, however, about their social interactions with family members when engaged with these technologies. This article examines video-recorded interactions between a father and his two young children, one aged 18 months using an iPhone and one aged three years accessing an iPad. Drawing on Ethnomethodology and Conversation Analysis, analysis establishes ways the family members engage and disengage in talk so as to manage their individual activity with mobile devices and accomplish interaction with each other. Findings are relevant for understanding children’s everyday practices with mobile technologies.
Resumo:
Located in the Gulf of Mexico in nearly 8,000 ft of water, the Perdido project is the deepest spar application to date in the world and Shell’s first fully integrated application of its inhouse digital oilfield technology— called “Smart Field”—in the Western hemisphere. Developed by Shell on behalf of partners BP and Chevron, the spar and the subsea equipment connected to it will eventually capture about an order of magnitude more data than is collected from any other Shelldesigned and -managed development operating in the Gulf of Mexico. This article describes Shell’s digital oilfield design philosophy, briefly explains the five design elements that underpin “smartness” in Shell’s North and South American operations and sheds light on the process by which a highly customized digital oilfield development and management plan was put together for Perdido. Although Perdido is the first instance in North and South America in which these design elements and processes were applied in an integrated way, all of Shell’s future new developments in the Western hemisphere are expected to follow the same overarching design principles. Accordingly, this article uses Perdido as a real-world example to outline the high-level details of Shell’s digital oilfield design philosophy and processes.
Resumo:
This thesis is an investigation of the media's representation of children and ICT. The study draws on moral panic theory and Queensland newspaper media, to identify the impact of newspaper reporting on the public's perceptions of young people and ICT.
Resumo:
Gene silencing was perceived initially as an unpredictable and inconvenient side effect of introducing transgenes into plants. It now seems that it is the consequence of accidentally triggering the plant's adaptive defence mechanism against viruses and transposable elements. This recently discovered mechanism, although mechanistically different, has a number of parallels with the immune system of mammals.
Resumo:
This paper presents a long-term experiment where a mobile robot uses adaptive spherical views to localize itself and navigate inside a non-stationary office environment. The office contains seven members of staff and experiences a continuous change in its appearance over time due to their daily activities. The experiment runs as an episodic navigation task in the office over a period of eight weeks. The spherical views are stored in the nodes of a pose graph and they are updated in response to the changes in the environment. The updating mechanism is inspired by the concepts of long- and short-term memories. The experimental evaluation is done using three performance metrics which evaluate the quality of both the adaptive spherical views and the navigation over time.
Resumo:
This paper explores the use of subarrays as array elements. Benefits of such a concept include improved gain in any direction without significantly increasing the overall size of the array and enhanced pattern control. The architecture for an array of subarrays will be discussed via a systems approach. Individual system designs are explored in further details and proof of principle is illustrated through a manufactured examples.
Resumo:
BACKGROUND/OBJECTIVEs A decline in resting energy expenditure (REE) beyond that predicted from changes in body composition has been noted following dietary-induced weight loss. However, it is unknown whether a compensatory downregulation in REE also accompanies exercise (EX)-induced weight loss, or whether this adaptive metabolic response influences energy intake (EI). SUBJECTS/METHODS Thirty overweight and obese women (body mass index (BMI)=30.6±3.6 kg/m2) completed 12 weeks of supervised aerobic EX. Body composition, metabolism, EI and metabolic-related hormones were measured at baseline, week 6 and post intervention. The metabolic adaptation (MA), that is, difference between predicted and measured REE was also calculated post intervention (MApost), with REE predicted using a regression equation generated in an independent sample of 66 overweight and obese women (BMI=31.0±3.9 kg/m2). RESULTS Although mean predicted and measured REE did not differ post intervention, 43% of participants experienced a greater-than-expected decline in REE (−102.9±77.5 kcal per day). MApost was associated with the change in leptin (r=0.47; P=0.04), and the change in resting fat (r=0.52; P=0.01) and carbohydrate oxidation (r=−0.44; P=0.02). Furthermore, MApost was also associated with the change in EI following EX (r=−0.44; P=0.01). CONCLUSIONS Marked variability existed in the adaptive metabolic response to EX. Importantly, those who experienced a downregulation in REE also experienced an upregulation in EI, indicating that the adaptive metabolic response to EX influences both physiological and behavioural components of energy balance.