878 resultados para acute kidney injury


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interstitial fibrosis, a histological process common to many kidney diseases, is the precursor state to end stage kidney disease, a devastating and costly outcome for the patient and the health system. Fibrosis is historically associated with chronic kidney disease (CKD) but emerging evidence is now linking many forms of acute kidney disease (AKD) with the development of CKD. Indeed, we and others have observed at least some degree of fibrosis in up to 50% of clinically defined cases of AKD. Epithelial cells of the proximal tubule (PTEC) are central in the development of kidney interstitial fibrosis. We combine the novel techniques of laser capture microdissection and multiplex-tandem PCR to identify and quantitate “real time” gene transcription profiles of purified PTEC isolated from human kidney biopsies that describe signaling pathways associated with this pathological fibrotic process. Our results: (i) confirm previous in-vitro and animal model studies; kidney injury molecule-1 is up-regulated in patients with acute tubular injury, inflammation, neutrophil infiltration and a range of chronic disease diagnoses, (ii) provide data to inform treatment; complement component 3 expression correlates with inflammation and acute tubular injury, (iii) identify potential new biomarkers; proline 4-hydroxylase transcription is down-regulated and vimentin is up-regulated across kidney diseases, (iv) describe previously unrecognized feedback mechanisms within PTEC; Smad-3 is down-regulated in many kidney diseases suggesting a possible negative feedback loop for TGF-β in the disease state, whilst tight junction protein-1 is up-regulated in many kidney diseases, suggesting feedback interactions with vimentin expression. These data demonstrate that the combined techniques of laser capture microdissection and multiplex-tandem PCR have the power to study molecular signaling within single cell populations derived from clinically sourced tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute respiratory distress syndrome is the most severe manifestation of acute lung injury and it is associated with high mortality rate. Despite better understanding of ARDS pathophysiology, its mechanism is still unclear. Mechanical ventilation is the main ARDS supportive treatment. However, mechanical ventilation is a non-physiologic process and complications are associated with its application. Mechanical ventilation may induce lung injury, referred to as ventilator-induced lung injury. Frequently, VILI is related to macroscopic injuries associated with alveolar rupture. The present article is a review of the literature on ventilator-induced lung injury in acute respiratory distress syndrome. Animal and human studies were reviewed. We mainly selected publications in the past 5 years, but did not exclude commonly referenced and highly regarded older publications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We hypothesized that: (1) intraabdominal hypertension increases pulmonary inflammatory and fibrogenic responses in acute lung injury (ALI); (2) in the presence of intraabdominal hypertension, higher tidal volume reduces lung damage in extrapulmonary ALI, but not in pulmonary ALI. Wistar rats were randomly allocated to receive Escherichia coli lipopolysaccharide intratracheally (pulmonary ALI) or intraperitoneally (extrapulmonary ALI). After 24 h, animals were randomized into subgroups without or with intraabdominal hypertension (15 mmHg) and ventilated with positive end expiratory pressure = 5 cmH(2)O and tidal volume of 6 or 10 ml/kg during 1 h. Lung and chest wall mechanics, arterial blood gases, lung and distal organ histology, and interleukin (IL)-1 beta, IL-6, caspase-3 and type III procollagen (PCIII) mRNA expressions in lung tissue were analyzed. With intraabdominal hypertension, (1) chest-wall static elastance increased, and PCIII, IL-1 beta, IL-6, and caspase-3 expressions were more pronounced than in animals with normal intraabdominal pressure in both ALI groups; (2) in extrapulmonary ALI, higher tidal volume was associated with decreased atelectasis, and lower IL-6 and caspase-3 expressions; (3) in pulmonary ALI, higher tidal volume led to higher IL-6 expression; and (4) in pulmonary ALI, liver, kidney, and villi cell apoptosis was increased, but not affected by tidal volume. Intraabdominal hypertension increased inflammation and fibrogenesis in the lung independent of ALI etiology. In extrapulmonary ALI associated with intraabdominal hypertension, higher tidal volume improved lung morphometry with lower inflammation in lung tissue. Conversely, in pulmonary ALI associated with intraabdominal hypertension, higher tidal volume increased IL-6 expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To compare the magnetic resonance (MR) imaging findings in patients with acute whiplash injury with those in matched control subjects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During inflammation, excess production and release of matrix proteinases, including matrix metalloproteinases (MMPs) and serine proteinases, may result in dysregulated extracellular proteolysis leading to development of tissue damage. Pulmonary inflammation may play an important role in the pathogenesis of lung injury in the preterm infant. The aims of this study were to evaluate involvement of MMPs and serine proteinase trypsin in acute and chronic lung injury in preterm infants and to study the role of these enzymes in acute lung injury by means of an animal model of hyperoxic lung injury. Molecular forms and levels of MMP-2, -8, and -9, and their specific inhibitor, tissue inhibitor of metalloproteinases (TIMP)-2, as well as trypsin were studied in tracheal aspirate fluid (TAF) samples collected from preterm infants with respiratory distress. Expression and distribution of trypsin-2 and proteinase-activated receptor 2 (PAR2) was examined in autopsy lung specimens from fetuses, from preterm infants with respiratory distress syndrome (RDS) or bronchopulmonary dysplasia (BPD), and from newborn infants without lung injury. We detected higher MMP-8 and trypsin-2 and lower TIMP-2 in TAF from preterm infants with more severe acute respiratory distress. Infants subsequently developing BPD had higher levels of MMP-8 and trypsin-2 early postnatally than did those who survived without this chronic lung injury. Immunohistochemically, trypsin-2 was mainly detectable in bronchial epithelium, but also in alveolar epithelium, and its expression was strongest in prolonged RDS. Since trypsin-2 is potent activator of PAR2, a G-protein coupled receptor involved in inflammation, we studied PAR2 expression in the lung. PAR2 co-localized with trypsin-2 in bronchoalveolar epithelium and its expression was significantly higher in bronchoalveolar epithelium in preterm infants with prolonged RDS than in newborn controls. In the experimental study, rats were exposed to >95% oxygen for 24, 48, and 60 hours, or room air. At 48 hours of hyperoxia, MMP-8 and trypsin levels sharply increased in bronchoalveolar lavage fluid, and expression of trypsin appeared in alveolar epithelium, and MMP-8 predominantly in macrophages. In conclusion, high pulmonary MMP-8 and trypsin-2 early postnatally are associated with severity of acute lung injury and subsequent development of BPD in preterm infants. In the injured preterm lung, trypsin-2 co-localizes with PAR2 in bronchoalveolar epithelium, suggesting that PAR2 activated by high levels of trypsin-2 is involved in lung inflammation associated with development of BPD. Marked increase in MMP-8 and trypsin early in the course of experimental hyperoxic lung injury suggests that these enzymes play a role in the pathogenesis of acute lung injury. Further exploration of the roles of trypsin and MMP-8 in lung injury may offer new targets for therapeutic intervention.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Acute respiratory failure (ARF) is the most common type of organ failure leading to the need for intensive care. It is often secondary to acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS). ARF, and especially ALI and ARDS, cause increased morbidity, and mortality rates remain high (up to 40%). These disorders are characterised by inflammatory reaction and tissue damage. In some cases, inflammation continues and leads to an overwhelming repair process with ongoing fibrosis, accompanied by organ dysfunction and eventually a loss of function. Measuring the magnitude of the inflammation, and the repair process, would theoretically offer information concerning outcome. Early identification of patients whose disease process is likely to proceed unfavourably, would help clinicians to optimise their treatment. The aim of this study was to evaluate the epidemiology of ARF, its treatment, and outcome in Finland, with special interest in biomarkers, and their value in the prediction of mortality. Altogether, 958 adult patients treated with ventilatory support were prospectively included in this study during an eight week period in 2007 in 25 intensive care units. Plasma aminoterminal pro-brain natriuretic peptide (NT-pro-BNP) was assessed in 602 patients, and plasma cell-free DNA in 580 patients, to evaluate their prognostic value in ARF. Markers of collagen metabolism were studied in longitudinal serum samples in 68 patients in order to evaluate their evolution in ARF and the association to multiple organ dysfunction (MOD). Ventilatory support was used in 39% of all ICU patients. The estimated incidence of ARF was 149.5/100 000 per year. Median tidal volumes used were higher than recommended. Overall mortality at 90 days was 31%. Plasma NT-pro-BNP and cell-free DNA were highly increased in the majority of patients. Both markers were independent predictors of 90-day mortality, but their discriminative power was at most moderate when used separately. The mortality was highest in those patients, in whom both biomarkers were over their separate cut-off values. Thus, combined use of these biomarkers may increase their clinical value in the mortality prediction. The markers of collagen metabolism changed significantly over time in surviving patients. None of these markers did associate with MOD in these patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cognitive impairment is common following traumatic brain injury (TBI), and neuroinflammatory mechanisms may predispose to the development of neurodegenerative disease. Apolipoprotein E (apoE) polymorphisms modify neuroinflammatory responses, and influence both outcome from acute brain injury and the risk of developing neurodegenerative disease. We demonstrate that TBI accelerates neurodegenerative pathology in double-transgenic animals expressing the common human apoE alleles and mutated amyloid precursor protein, and that pathology is exacerbated in the presence of the apoE4 allele. The administration of an apoE-mimetic peptide markedly reduced the development of neurodegenerative pathology in mice homozygous for apoE3 as well as apoE3/E4 heterozygotes. These results demonstrate that TBI accelerates the cardinal neuropathological features of neurodegenerative disease, and establishes the potential for apoE mimetic therapies in reducing pathology associated with neurodegeneration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pyramidal neurons (PyNs) in ‘higher’ brain are highly susceptible to acute stroke injury yet ‘lower’ brain regions better survive global ischemia, presumably because of better residual blood flow. Here we show that projection neurons in ‘lower’ brain regions of hypothalamus and brainstem intrinsically resist acute stroke-like injury independent of blood flow in the brain slice. In contrast `higher` projection neurons in neocortex, hippocampus, striatum and thalamus are highly susceptible. In live brain slices from rat deprived of oxygen and glucose (OGD), we imaged anoxic depolarization (AD) as it propagates through these regions. AD, the initial electrophysiological event of stroke, is a depolarizing front that drains residual energy in compromised gray matter. The extent of AD reliably determines ensuing damage in higher brain, but using whole-cell recordings we found that all CNS neurons do not generate a robust AD. Higher neurons generate strong AD and show no functional recovery in contrast to neurons in hypothalamus and brainstem that generate a weak and gradual AD. Most dramatically, lower neurons recover their membrane potential, input resistance and spike amplitude when oxygen and glucose is restored, while higher neurons do not. Following OGD, new recordings could be acquired in all lower (but not higher) brain regions, with some neurons even withstanding multiple OGD exposure. Two-photon laser scanning microscopy confirmed neuroprotection in lower, but not higher gray matter. Specifically pyramidal neurons swell and lose their dendritic spines post-OGD, whereas neurons in hypothalamus and brainstem display no such injury. Exposure to the Na+/K+ ATPase inhibitor ouabain (100 μM), induces depolarization similar to OGD in all cell types tested. Moreover, elevated [K+]o evokes spreading depression (SD), a milder version of AD, in higher brain but not hypothalamus or brainstem so weak AD correlates with the inability to generate SD. In summary, overriding the Na+/K+ pump using OGD, ouabain or elevated [K+]o evokes steep and robust depolarization of higher gray matter. We show that this important regional difference can be largely accounted for by the intrinsic properties of the resident neurons and that Na+/K+ ATPase pump efficiency is a major determining factor generating strong or weak spreading depolarizations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives: Acute respiratory distress syndrome (ARDS) is characterized by alveolar-capillary barrier damage. Matrix metalloproteinases (MMPs) are implicated in the pathogenesis of ARDS. In the Beta Agonists in Acute Lung Injury Trial, intravenous salbutamol reduced extravascular lung water (EVLW) in patients with ARDS at day 4 but not inflammatory cytokines or neutrophil recruitment. We hypothesized that salbutamol reduces MMP activity in ARDS.

Methods: MMP-1/-2/-3/-7/-8/-9/-12/-13 was measured in supernatants of distal lung epithelial cells, type II alveolar cells, and bronchoalveolar lavage (BAL) fluid from patients in the Beta Agonists in Acute Lung Injury study by multiplex bead array and tissue inhibitors of metalloproteinases (TIMPs)-1/-2 by enzyme-linked immunosorbent assay. MMP-9 protein and activity levels were further measured by gelatin zymography and fluorokine assay.

Measurements and Main Results: BAL fluid MMP-1/-2/-3 declined by day 4, whereas total MMP-9 tended to increase. Unexpectedly, salbutamol augmented MMP-9 activity. Salbutamol induced 33.7- and 13.2-fold upregulation in total and lipocalin-associated MMP-9, respectively at day 4, compared with 2.0- and 1.3-fold increase in the placebo group, p < 0.03. Salbutamol did not affect BAL fluid TIMP-1/-2. Net active MMP-9 was higher in the salbutamol group (4222 pg/mL, interquartile range: 513-7551) at day 4 compared with placebo (151 pg/mL, 124-2108), p = 0.012. Subjects with an increase in BAL fluid MMP-9 during the 4-day period had lower EVLW measurements than those in whom MMP-9 fell (10 vs. 17 mL/kg, p = 0.004): change in lung water correlated inversely with change in MMP-9, r = -.54, p = 0.0296. Salbutamol up-regulated MMP-9 and down-regulated TIMP-1/-2 secretion in vitro by distal lung epithelial cells. Inhibition of MMP-9 activity in cultures of type II alveolar epithelial cells reduced wound healing.

Conclusions: Salbutamol specifically up-regulates MMP-9 in vitro and in vivo in patients with ARDS. Up-regulated MMP-9 is associated with a reduction in EVLW. MMP-9 activity is required for alveolar epithelial wound healing in vitro. Data suggest MMP-9 may have a previously unrecognized beneficial role in reducing pulmonary edema in ARDS by improving alveolar epithelial healing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury. It is a response to various diseases of variable etiology, including SARS-CoV infection. To date, a comprehensive study of the genomic physiopathology of ARDS (and SARS) is lacking, primarily due to the difficulty of finding suitable materials to study the disease process at a tissue level (instead of blood, sputa or swaps). Hereby we attempt to provide such study by analyzing autopsy lung samples from patient who died of SARS and showed different degrees of severity of the pulmonary involvement. We performed real-time quantitative PCR analysis of 107 genes with functional roles in inflammation, coagulation, fibrosis and apoptosis: some key genes were confirmed at a protein expression level by immunohistochemistry and correlated to the degree of morphological severity present in the individual samples analyzed. Significant expression levels were identified for ANPEP (a receptor for CoV), as well as inhibition of the STAT1 pathway, IFNs production and CXCL10 (a T-cell recruiter). Other genes unassociated to date with ARDS/SARS include C1Qb, C5R1, CASP3, CASP9, CD14, CD68, FGF7, HLA-DRA, ICF1, IRF3, MALAT-1, MSR1, NFIL3, SLPI, USP33, CLC, GBP1 and TACI. As a result, we proposed to therapeutically target some of these genes with compounds such as ANPEP inhibitors, SLPI and dexamethasone. Ultimately, this study may serve as a model for future, tissue-based analyses of fibroinflammatory conditions affecting the lung. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Caveolae are plasma membrane structures formed from a complex of the proteins caveolin-1 and caveolin-2. Caveolae interact with pro-inflammatory cytokines and are dysregulated in fibrotic disease. Although caveolae are present infrequently in healthy kidneys, they are abundant during kidney injury. An association has been identified between a CAV1 gene variant and long term kidney transplant survival. Chronic, gradual decline in transplant function is a persistent problem in kidney transplantation. The aetiology of this is diverse but fibrosis within the transplanted organ is the common end point. This study is the first to investigate the association of CAV2 gene variants with kidney transplant outcomes. Genomic DNA from donors and recipients of 575 kidney transplants performed in Belfast was investigated for common variation in CAV2 using a tag SNP approach. The CAV2 SNP rs13221869 was nominally significant for kidney transplant failure. Validation was sought in an independent group of kidney transplant donors and recipients from Dublin, Ireland using a second genotyping technology. Due to the unexpected absence of rs13221869 from this cohort, the CAV2 gene was resequenced. One novel SNP and a novel insertion/deletion in CAV2 were identified; rs13221869 is located in a repetitive region and was not a true variant in resequenced populations. CAV2 is a plausible candidate gene for association with kidney transplant outcomes given its proximity to CAV1 and its role in attenuating fibrosis. This study does not support an association between CAV2 variation and kidney transplant survival. Further analysis of CAV2 should be undertaken with an awareness of the sequence complexities and genetic variants highlighted by this study. 

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rationale: Experimental studies suggest that pretreatment with b-agonists might prevent acute lung injury (ALI).

Objectives: To determine if in adult patients undergoing elective esophagectomy, perioperative treatment with inhaled b-agonists effects the development of early ALI.

Methods:We conducted a randomized placebo-controlled trial in 12 UK centers (2008-2011). Adult patients undergoing elective esophagectomy were allocated to prerandomized, sequentially numbered treatment packs containing inhaled salmeterol (100 mg twice daily) or a matching placebo. Patients, clinicians, and researchers were masked to treatment allocation. The primary outcome was development of ALI within 72 hours of surgery. Secondary outcomes were ALI within 28 days, organ failure, adverse events, survival, and health-related quality of life. An exploratory substudy measured biomarkers of alveolar-capillary inflammation and injury.

Measurements and Main Results: A total of 179 patients were randomized to salmeterol and 183 to placebo. Baseline characteristics were similar. Treatment with salmeterol did not prevent early lung injury (32 [19.2%] of 168 vs. 27 [16.0%] of 170; odds ratio [OR], 1.25; 95% confidence interval [CI], 0.71-2.22). There was no difference in organ failure, survival, or health-related quality of life.Adverse events were less frequent in the salmeterol group (55 vs. 70; OR, 0.63; 95% CI, 0.39-0.99), predominantly because of a lower number of pneumonia (7 vs. 17; OR, 0.39; 95% CI, 0.16-0.96). Salmeterol reduced some biomarkers of alveolar inflammation and epithelial injury.

Conclusion: Perioperative treatment with inhaled salmeterol was well tolerated but did not prevent ALI.

Clinical trial registered with International Standard Randomized Controlled Trial Register (ISRCTN47481946) and European Union database of randomized Controlled Trials (EudraCT 2007-004096-19).Copyright © 2014 by the American Thoracic Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mycoplasma pneumoniae (M. pneumoniae) is a common pathogen in cases of atypical pneumonia. Most individuals with Mycoplasma pneumonia run a benign course, with non-specific symptoms of malaise, fever and non-productive cough that usually resolve with no long-term sequelae. Acute lung injury is not commonly seen in Mycoplasma pneumonia. We report a case of acute respiratory distress syndrome cause by M. pneumoniae diagnosed by quantitative real-time polymerase chain reaction (RT-PCR).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Clozapine, whilst associated commonly with a transient and benign increase in liver enzymes, has also been associated with varying presentations of hepatitis in existing case reports. This report describes what we believe to be the first documented case of acute liver injury and pleural effusion associated with clozapine, resolving after cessation of the agent. The case supports existing literature in advocating a high index of suspicion, particularly in the 4-5 weeks following clozapine initiation, when considering nonspecific clinical symptoms and signs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rationale: IL-17A is purported to help drive early pathogenesis in acute respiratory distress syndrome (ARDS) by enhancing neutrophil recruitment. Whilst IL-17A is the archetypal cytokine of T helper (Th)17 cells, it is produced by a number of lymphocytes, the source during ARDS being unknown.

Objectives: To identify the cellular source and the role of IL17A in the early phase of lung injury

Methods: Lung injury was induced in WT (C57BL/6) and IL-17 KO mice with aerosolised LPS (100 µg) or Pseudomonas aeruginosa infection. Detailed phenotyping of the cells expressing RORγt, the transcriptional regulator of IL-17 production, in the mouse lung at 24 hours was carried out by flow cytometry.

Measurement and Main Results: A 100-fold reduction in neutrophil infiltration was observed in the lungs of the IL-17A KO compared to wild type (WT) mice. The majority of RORγt+ cells in the mouse lung were the recently identified type 3 innate lymphoid cells (ILC3). Detailed characterisation revealed these pulmonary ILC3s (pILC3s) to be discrete from those described in the gut. The critical role of these cells was verified by inducing injury in Rag2 KO mice which lack T cells but retain ILCs. No amelioration of pathology was observed in the Rag2 KO mice.

Conclusions: IL-17 is rapidly produced during lung injury and significantly contributes to early immunopathogenesis. This is orchestrated largely by a distinct population of pILC3 cells. Modulation of pILC3s’ activity may potentiate early control of the inflammatory dysregulation seen in ARDS, opening up new therapeutic targets.