973 resultados para YELLOW FEVER VIRUS
Resumo:
The Rep protein of geminiviruses is the sole viral protein required for their DNA replication. The amino acid sequence of Rep protein contains an NTP binding consensus motif (P-loop). Here we show that purified Rep protein of tomato yellow leaf curl virus expressed in Escherichia coli exhibits an ATPase activity in vitro. Amino acid exchanges in the P-loop sequence of Rep causes a substantial decrease or loss of the ATPase activity. In vivo, mutant viruses carrying these Rep mutations do not replicate in plant cells. These results show that ATP binding by the Rep protein of geminiviruses is required for its function in viral DNA replication.
Resumo:
Elongated particles of simple RNA viruses of plants are composed of an RNA molecule coated with numerous identical capsid protein subunits to form a regular helical structure, of which tobacco mosaic virus is the archetype. Filamentous particles of the closterovirus beet yellow virus (BYV) reportedly contain approximately 4000 identical 22-kDa (p22) capsid protein subunits. The BYV genome encodes a 24-kDa protein (p24) that is structurally related to the p22. We searched for the p24 in BYV particles by using immunoelectron microscopy with specific antibodies against the recombinant p24 protein and its N-terminal peptide. A 75-nm segment at one end of the 1370-nm filamentous viral particle was found to be consistently labeled with both types of antibodies, thus indicating that p24 is indeed the second capsid protein and that the closterovirus particle, unlike those of other plant viruses with helical symmetry, has a "rattlesnake" rather than uniform structure.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
A collection of articles about mosquito control and West Nile virus that have been bound into one volume.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Background There are no analytical studies of individual risks for Ross River virus (RRV) disease. Therefore, we set out to determine individual risk and protective factors for RRV disease in a high incidence area and to assess the utility of the case-control design applied for this purpose to an arbovirus disease. Methods We used a prospective matched case-control study of new community cases of RRV disease in the local government areas of Cairns, Mareeba, Douglas, and Atherton, in tropical Queensland, from January I to May 31, 1998. Results Protective measures against mosquitoes reduced the risk for disease. Mosquito coils, repellents, and citronella candles each decreased risk by at least 2-fold, with a dose-response for the number of protective measures used. Light-coloured clothing decreased risk 3-fold. Camping increased the risk 8-fold. Conclusions These risks were substantial and statistically significant, and provide a basis for educational programs on individual protection against RRV disease in Australia. Our study demonstrates the utility of the case-control method for investigating arbovirus risks. Such a risk analysis has not been done before for RRV infection, and is infrequently reported for other arbovirus infections.
Resumo:
Transient expression of Ebola virus (EBOV) glycoprotein GP causes downregulation of surface proteins, cell rounding and detachment, a phenomenon believed to play a central role in the pathogenicity of the virus. In this study, evidence that moderate expression of GP does not result in such morphological changes was provided. It was shown that GP continuously produced in 293T cells from the Kunjin virus replicon was correctly processed and transported to the plasma membrane without affecting the surface expression of beta 1 and alpha 5 integrins and major histocompatibility complex I molecules. The level of GIP expression in Kunjin replicon GP-expressing cells was similar to that observed in cells infected with EBOV early in infection and lower than that produced in cells transfected with plasmid DNA, phCMV-GP(1) expressing GP from a strong promoter. Importantly, transient transfection of Kunjin replicon GIP-expressing cells with GIP-coding plasmid DNA resulted in overexpression of GP, which lead to the downregulation of surface molecules and massive rounding and detachment of transfected cells. Here, it was also demonstrated that cell rounding and downregulation of the surface markers are the late events in EBOV infection, whereas synthesis and massive release of virus particles occur at early steps and do not cause significant cytotoxic effects. These findings indicate that the synthesis of EBOV GP in virus-infected cells is controlled well by several mechanisms that do not allow GP overexpression and hence the early appearance of its cytotoxic properties.
Resumo:
The importance and risk of emerging mosquito borne diseases is going to increase in the European temperate areas due to climate change. The present and upcoming climates of Transdanubia seem to be suitable for the main vector of Chikungunya virus, the Asian tiger mosquito, Aedes albopictus Skuse (syn. Stegomyia albopicta). West Nile fever is recently endemic in Hungary. We used climate envelope modeling to predict the recent and future potential distribution/occurrence areas of the vector and the disease. We found that climate can be sufficient to explain the recently observed area of A. albopictus, while in the case of West Nile fever, the migration routes of reservoir birds, the run of the floodplains, and the position of lakes are also important determinants of the observed occurrence.
Resumo:
Dengue fever is one of the most important mosquito-borne diseases worldwide and is caused by infection with dengue virus (DENV). The disease is endemic in tropical and sub-tropical regions and has increased remarkably in the last few decades. At present, there is no antiviral or approved vaccine against the virus. Treatment of dengue patients is usually supportive, through oral or intravenous rehydration, or by blood transfusion for more severe dengue cases. Infection of DENV in humans and mosquitoes involves a complex interplay between the virus and host factors. This results in regulation of numerous intracellular processes, such as signal transduction and gene transcription which leads to progression of disease. To understand the mechanisms underlying the disease, the study of virus and host factors is therefore essential and could lead to the identification of human proteins modulating an essential step in the virus life cycle. Knowledge of these human proteins could lead to the discovery of potential new drug targets and disease control strategies in the future. Recent advances of high throughput screening technologies have provided researchers with molecular tools to carry out investigations on a large scale. Several studies have focused on determination of the host factors during DENV infection in human and mosquito cells. For instance, a genome-wide RNA interference (RNAi) screen has identified host factors that potentially play an important role in both DENV and West Nile virus replication (Krishnan et al. 2008). In the present study, a high-throughput yeast two-hybrid screen has been utilised in order to identify human factors interacting with DENV non-structural proteins. From the screen, 94 potential human interactors were identified. These include proteins involved in immune signalling regulation, potassium voltage-gated channels, transcriptional regulators, protein transporters and endoplasmic reticulum-associated proteins. Validation of fifteen of these human interactions revealed twelve of them strongly interacted with DENV proteins. Two proteins of particular interest were selected for further investigations of functional biological systems at the molecular level. These proteins, including a nuclear-associated protein BANP and a voltage-gated potassium channel Kv1.3, both have been identified through interaction with the DENV NS2A. BANP is known to be involved in NF-kB immune signalling pathway, whereas, Kv1.3 is known to play an important role in regulating passive flow of potassium ions upon changes in the cell transmembrane potential. This study also initiated a construction of an Aedes aegypti cDNA library for use with DENV proteins in Y2H screen. However, several issues were encountered during the study which made the library unsuitable for protein interaction analysis. In parallel, innate immune signalling was also optimised for downstream analysis. Overall, the work presented in this thesis, in particular the Y2H screen provides a number of human factors potentially targeted by DENV during infection. Nonetheless, more work is required to be done in order to validate these proteins and determine their functional properties, as well as testing them with infectious DENV to establish a biological significance. In the long term, data from this study will be useful for investigating potential human factors for development of antiviral strategies against dengue.
Resumo:
The authors describe the unusual case of a 63-year-old patient who was referred with fever and lethargy, and was found to be hyponatraemic. The patient subsequently developed hemiparesis, and neuroradiology showed several space-occupying brain lesions. The cause was later identified as cerebral toxoplasmosis in undiagnosed Acquired Immunodeficiency Syndrome (AIDS).
Resumo:
Severe dengue pathogenesis is not fully understood, but high levels of proinflammatory cytokines have been associated with dengue disease severity. In this study, the cytokine levels in 171 sera from Mexican patients with primary dengue fever (DF) and dengue haemorrhagic fever (DHF) from dengue virus (DENV) 1 (n = 116) or 2 (n = 55) were compared. DF and DHF were defined according to the patient’s clinical condition, the primary infections as indicated by IgG enzymatic immunoassay negative results, and the infecting serotype as assessed by real-time reverse transcriptionpolymerase chain reaction. Samples were analysed for circulating levels of interleukin (IL)-12p70, interferon (IFN)-γ, tumour necrosis factor (TNF)-α, IL-6, and IL-8 using a commercial cytometric bead array. Significantly higher IFN-γ levels were found in patients with DHF than those with DF. However, significantly higher IL-12p70, TNF-α, and IL-6 levels were associated with DHF only in patients who were infected with DENV2 but not with DENV1. Moreover, patients with DF who were infected with DENV1 showed higher levels of IL-12p70, TNF-α, and IL-6 than patients with DHF early after-fever onset. The IL-8 levels were similar in all cases regardless of the clinical condition or infection serotype. These results suggest that the association between high proinflammatory cytokine levels and dengue disease severity does not always stand, and it once again highlights the complex nature of DHF pathogenesis.
Resumo:
Dengue is an acute febrile disease caused by the mosquito-borne dengue virus (DENV) that according to clinical manifestations can be classified as asymptomatic, mild or severe dengue. Severe dengue cases have been associated with an unbalanced immune response characterised by an over secretion of inflammatory cytokines. In the present study we measured type I interferon (IFN-I) transcript and circulating levels in primary and secondary DENV infected patients. We observed that dengue fever (DF) and dengue haemorrhagic fever (DHF) patients express IFN-I differently. While DF and DHF patients express interferon-a similarly (52,71 ± 7,40 and 49,05 ± 7,70, respectively), high levels of circulating IFN-b were associated with primary DHF patients. On the other hand, secondary DHF patients were not able to secrete large amounts of IFN-b which in turn may have influenced the high-level of viraemia. Our results suggest that, in patients from our cohort, infection by DENV serotype 3 elicits an innate response characterised by higher levels of IFN-b in the DHF patients with primary infection, which could contribute to control infection evidenced by the low-level of viraemia in these patients. The present findings may contribute to shed light in the role of innate immune response in dengue pathogenesis.
Resumo:
Ebola virus disease was irst described in 1976 originating from the Ebola River in the Democratic Republic of Congo. Since then, Ebola virus has become an important public health threat in Africa, and now it is of great concern worldwide due to the recent outbreaks (9216 cases with 4555 deaths up to October 20th, 2014), and it is so far the largest and deadliest recorded in history. Five Ebola virus species have been identiied (including Zaire, Sudan, Ivory Coast, Reston, and Bundibugyo Ebola virus), and four of them have proved to be highly pathogenic for both human and non-human primates, causing viral hemorrhagic fever with case fatality rates of up to 90%, for which no approved therapeutics or vaccines are currently available. Ebola virus infections are characterized by immune suppression and a systemic inlammatory response that causes impairment of the vascular, coagulation, and immune systems, leading to multiorgan failure and shock, and thus, in some ways, resembling septic shock. The major affected countries, Sierra Leone, Guinea, Liberia, and Nigeria, have been struggling to contain and to mitigate the outbreak. Gene sequencing of the 2014 virus (2014WA) outbreak has demonstrated 98% homology with the Zaire Ebola virus, with a 49% case fatality ratio across the affected countries. In this review the characteristics of the viruses, pathogenesis, diagnosis, treatment, and the cases reported in health care workers (HCW) are described, as well as a summary of outbreaks of the virus since its discovery, including these last two outbreaks in Africa.
Resumo:
BACKGROUND The uncontrolled presence of African swine fever (ASF) in Russian Federation (RF) poses a serious risk to the whole European Union (EU) pig industry. Although trade of pigs and their products is banned since the official notification in June 2007, the potential introduction of ASF virus (ASFV) may occur by other routes, which are very frequent in ASF, and more difficult to control, such as contaminated waste or infected vehicles. This study was intended to estimate the risk of ASFV introduction into the EU through three types of transport routes: returning trucks, waste from international ships and waste from international planes, which will be referred here as transport-associated routes (TAR). Since no detailed and official information was available for these routes, a semi-quantitative model based on the weighted combination of risk factors was developed to estimate the risk of ASFV introduction by TAR. Relative weights for combination of different risk factors as well as validation of the model results were obtained by an expert opinion elicitation. RESULTS Model results indicate that the relative risk for ASFV introduction through TAR in most of the EU countries (16) is low, although some countries, specifically Poland and Lithuania, concentrate high levels of risk, the returning trucks route being the analyzed TAR that currently poses the highest risk for ASFV introduction into the EU. The spatial distribution of the risk of ASFV introduction varies importantly between the analyzed introduction routes. Results also highlight the need to increase the awareness and precautions for ASF prevention, particularly ensuring truck disinfection, to minimize the potential risk of entrance into the EU. CONCLUSIONS This study presents the first assessment of ASF introduction into the EU through TAR. The innovative model developed here could be used in data scarce situations for estimating the relative risk associated to each EU country. This simple methodology provides a rapid and easy to interpret results on risk that may be used for a target and cost-effective allocation of resources to prevent disease introduction.