739 resultados para Word Associations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes results obtained using the modified Kanerva model to perform word recognition in continuous speech after being trained on the multi-speaker Alvey 'Hotel' speech corpus. Theoretical discoveries have recently enabled us to increase the speed of execution of part of the model by two orders of magnitude over that previously reported by Prager & Fallside. The memory required for the operation of the model has been similarly reduced. The recognition accuracy reaches 95% without syntactic constraints when tested on different data from seven trained speakers. Real time simulation of a model with 9,734 active units is now possible in both training and recognition modes using the Alvey PARSIFAL transputer array. The modified Kanerva model is a static network consisting of a fixed nonlinear mapping (location matching) followed by a single layer of conventional adaptive links. A section of preprocessed speech is transformed by the non-linear mapping to a high dimensional representation. From this intermediate representation a simple linear mapping is able to perform complex pattern discrimination to form the output, indicating the nature of the speech features present in the input window.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes recent improvements to the Cambridge Arabic Large Vocabulary Continuous Speech Recognition (LVCSR) Speech-to-Text (STT) system. It is shown that wordboundary context markers provide a powerful method to enhance graphemic systems by implicit phonetic information, improving the modelling capability of graphemic systems. In addition, a robust technique for full covariance Gaussian modelling in the Minimum Phone Error (MPE) training framework is introduced. This reduces the full covariance training to a diagonal covariance training problem, thereby solving related robustness problems. The full system results show that the combined use of these and other techniques within a multi-branch combination framework reduces the Word Error Rate (WER) of the complete system by up to 5.9% relative. Copyright © 2011 ISCA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new online psycholinguistic resource for Greek based on analyses of written corpora combined with text processing technologies developed at the Institute for Language & Speech Processing (ILSP), Greece. The "ILSP PsychoLinguistic Resource" (IPLR) is a freely accessible service via a dedicated web page, at http://speech.ilsp.gr/iplr. IPLR provides analyses of user-submitted letter strings (words and nonwords) as well as frequency tables for important units and conditions such as syllables, bigrams, and neighbors, calculated over two word lists based on printed text corpora and their phonetic transcription. Online tools allow retrieval of words matching user-specified orthographic or phonetic patterns. All results and processing code (in the Python programming language) are freely available for noncommercial educational or research use. © 2010 Springer Science+Business Media B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current commercial dialogue systems typically use hand-crafted grammars for Spoken Language Understanding (SLU) operating on the top one or two hypotheses output by the speech recogniser. These systems are expensive to develop and they suffer from significant degradation in performance when faced with recognition errors. This paper presents a robust method for SLU based on features extracted from the full posterior distribution of recognition hypotheses encoded in the form of word confusion networks. Following [1], the system uses SVM classifiers operating on n-gram features, trained on unaligned input/output pairs. Performance is evaluated on both an off-line corpus and on-line in a live user trial. It is shown that a statistical discriminative approach to SLU operating on the full posterior ASR output distribution can substantially improve performance both in terms of accuracy and overall dialogue reward. Furthermore, additional gains can be obtained by incorporating features from the previous system output. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The task of word-level confidence estimation (CE) for automatic speech recognition (ASR) systems stands to benefit from the combination of suitably defined input features from multiple information sources. However, the information sources of interest may not necessarily operate at the same level of granularity as the underlying ASR system. The research described here builds on previous work on confidence estimation for ASR systems using features extracted from word-level recognition lattices, by incorporating information at the sub-word level. Furthermore, the use of Conditional Random Fields (CRFs) with hidden states is investigated as a technique to combine information for word-level CE. Performance improvements are shown using the sub-word-level information in linear-chain CRFs with appropriately engineered feature functions, as well as when applying the hidden-state CRF model at the word level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sedimentation variables and benthic community data were collected at seven stations during four seasons in Xiangxi Bay of the Three Gorges Reservoir, China. Summer, the season of highest discharge into the reservoir, was characterized by the extreme sediment loading. The benthic macroinvertebrate community was dominated by oligochaetes across all seasons at most stations. In winter/spring, macroinvertebrate density and richness increased. Correspondence analysis showed that community structure differed among stations at the two ends of the bay in winter and among almost all stations in spring, However, no variable associated with sedimentation appeared to be associated with differences in the community.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ACM SIGIR; ACM SIGWEB