982 resultados para Winthrop Normal and Industrial College
Resumo:
B cells with a rearranged heavy-chain variable region VHa allotype-encoding VH1 gene segment predominate throughout the life of normal rabbits and appear to be the source of the majority of serum immunoglobulins, which thus bear VHa allotypes. The functional role(s) of these VH framework region (FR) allotypic structures has not been defined. We show here that B cells expressing surface immunoglobulin with VHa2 allotypic specificities are preferentially expanded and positively selected in the appendix of young rabbits. By flow cytometry, a higher proportion of a2+ B cells were progressing through the cell cycle (S/G2/M) compared to a2- B cells, most of which were in the G1/G0 phase of the cell cycle. The majority of appendix B cells in dark zones of germinal centers of normal 6-week-old rabbits were proliferating and very little apoptosis were observed. In contrast, in 6-week-old VH-mutant ali/ali rabbits, little cell proliferation and extensive apoptosis were observed. Nonetheless even in the absence of VH1, B cells with a2-like surface immunoglobulin had developed and expanded in the appendix of 11-week-old mutants. The numbers and tissue localization of B cells undergoing apoptosis then appeared similar to those found in 6-week-old normal appendix. Thus, B cells with immunoglobulin receptors lacking the VHa2 allotypic structures were less likely to undergo clonal expansion and maturation. These data suggest that "positive" selection of B lymphocytes through FR1 and FR3 VHa allotypic structures occurs during their development in the appendix.
Resumo:
von Willebrand factor (vWF) is essential for the induction of occlusive thrombosis in stenosed and injured pig arteries and for normal hemostasis. To separate the relative contribution of plasma and platelet vWF to arterial thrombosis, we produced chimeric normal and von Willebrand disease pigs by crossed bone marrow transplantation; von Willebrand disease (vWD) pigs were engrafted with normal pig bone marrow and normal pigs were engrafted with vWD bone marrow. Thrombosis developed in the chimeric normal pigs that showed normal levels of plasma vWF and an absence of platelet vWF; but no thrombosis occurred in the chimeric vWD pigs that demonstrated normal platelet vWF and an absence of plasma vWF. The ear bleeding times of the chimeric pigs were partially corrected by endogenous plasma vWF but not by platelet vWF. Our animal model demonstrated that vWF in the plasma compartment is essential for the development of arterial thrombosis and that it also contributes to the maintenance of bleeding time and hemostasis.
Resumo:
The increasing economic competition drives the industry to implement tools that improve their processes efficiencies. The process automation is one of these tools, and the Real Time Optimization (RTO) is an automation methodology that considers economic aspects to update the process control in accordance with market prices and disturbances. Basically, RTO uses a steady-state phenomenological model to predict the process behavior, and then, optimizes an economic objective function subject to this model. Although largely implemented in industry, there is not a general agreement about the benefits of implementing RTO due to some limitations discussed in the present work: structural plant/model mismatch, identifiability issues and low frequency of set points update. Some alternative RTO approaches have been proposed in literature to handle the problem of structural plant/model mismatch. However, there is not a sensible comparison evaluating the scope and limitations of these RTO approaches under different aspects. For this reason, the classical two-step method is compared to more recently derivative-based methods (Modifier Adaptation, Integrated System Optimization and Parameter estimation, and Sufficient Conditions of Feasibility and Optimality) using a Monte Carlo methodology. The results of this comparison show that the classical RTO method is consistent, providing a model flexible enough to represent the process topology, a parameter estimation method appropriate to handle measurement noise characteristics and a method to improve the sample information quality. At each iteration, the RTO methodology updates some key parameter of the model, where it is possible to observe identifiability issues caused by lack of measurements and measurement noise, resulting in bad prediction ability. Therefore, four different parameter estimation approaches (Rotational Discrimination, Automatic Selection and Parameter estimation, Reparametrization via Differential Geometry and classical nonlinear Least Square) are evaluated with respect to their prediction accuracy, robustness and speed. The results show that the Rotational Discrimination method is the most suitable to be implemented in a RTO framework, since it requires less a priori information, it is simple to be implemented and avoid the overfitting caused by the Least Square method. The third RTO drawback discussed in the present thesis is the low frequency of set points update, this problem increases the period in which the process operates at suboptimum conditions. An alternative to handle this problem is proposed in this thesis, by integrating the classic RTO and Self-Optimizing control (SOC) using a new Model Predictive Control strategy. The new approach demonstrates that it is possible to reduce the problem of low frequency of set points updates, improving the economic performance. Finally, the practical aspects of the RTO implementation are carried out in an industrial case study, a Vapor Recompression Distillation (VRD) process located in Paulínea refinery from Petrobras. The conclusions of this study suggest that the model parameters are successfully estimated by the Rotational Discrimination method; the RTO is able to improve the process profit in about 3%, equivalent to 2 million dollars per year; and the integration of SOC and RTO may be an interesting control alternative for the VRD process.
Resumo:
Background To analyze and compare the relationship between anterior and posterior corneal shape evaluated by a tomographic system combining the Scheimpflug photography and Placido-disc in keratoconus and normal healthy eyes, as well as to evaluate its potential diagnostic value. Methods Comparative case series including a sample of 161 eyes of 161 subjects with ages ranging from 7 to 66 years and divided into two groups: normal group including 100 healthy eyes of 100 subjects, and keratoconus group including 61 keratoconus eyes of 61 patients. All eyes received a comprehensive ophthalmologic examination including an anterior segment analysis with the Sirius system (CSO). Antero-posterior ratios for corneal curvature (k ratio) and shape factor (p ratio) were calculated. Logistic regression analysis was used to evaluate if some antero–posterior ratios combined with other clinical parameters were predictors of the presence of keratoconus. Results No statistically significant differences between groups were found in the antero–posterior k ratios for 3-, 5- and 7-mm diameter corneal areas (p ≥ 0.09). The antero–posterior p ratio for 4.5- and 8-mm diameter corneal areas was significantly higher in the normal group than in the keratoconus group (p < 0.01). The k ratio for 3, 5, and 7 mm was significantly higher in the keratoconus grade IV subgroup than in the normal group (p < 0.01). Furthermore, significant differences were found in the p ratio between the normal group and the keratoconus grade II subgroup (p ≤ 0.01). Finally, the logistic regression analysis identified as significant independent predictors of the presence of keratoconus (p < 0.01) the 8-mm anterior shape factor, the anterior chamber depth, and the minimal corneal thickness. Conclusions The antero-posterior k and p ratios are parameters with poor prediction ability for keratoconus, in spite of the trend to the presence of more prolate posterior corneal surfaces compared to the anterior in keratoconus eyes.
Resumo:
Different kinds of algorithms can be chosen so as to compute elementary functions. Among all of them, it is worthwhile mentioning the shift-and-add algorithms due to the fact that they have been specifically designed to be very simple and to save computer resources. In fact, almost the only operations usually involved with these methods are additions and shifts, which can be easily and efficiently performed by a digital processor. Shift-and-add algorithms allow fairly good precision with low cost iterations. The most famous algorithm belonging to this type is CORDIC. CORDIC has the capability of approximating a wide variety of functions with only the help of a slight change in their iterations. In this paper, we will analyze the requirements of some engineering and industrial problems in terms of type of operands and functions to approximate. Then, we will propose the application of shift-and-add algorithms based on CORDIC to these problems. We will make a comparison between the different methods applied in terms of the precision of the results and the number of iterations required.
Resumo:
162-167
Resumo:
121-131
Resumo:
187-206
Resumo:
113-120