927 resultados para Weathering.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is a basic work to ascertain the parameters of rock mass for evaluation about stability of the engineering. Anisotropism、inhomogeneity and discontinuity characters of the rock mass arise from the existing of the structural plane. Subjected to water、weathering effect、off-loading, mechanical characters of the rock mass are greatly different from rock itself, Determining mechanical parameters of the rock mass becomes so difficult because of structure effect、dimension effect、rheological character, ‘Can’t give a proper parameter’ becomes one of big problems for theoretic analysis and numerical simulation. With the increment of project scale, appraising the project rock mass and ascertaining the parameters of rock mass becomes more and more important and strict. Consequently, researching the parameters of rock mass has important theoretical significance and actual meaning. The Jin-ping hydroelectric station is the first highest hyperbolic arch dam in the world under construction, the height of the dam is about 305m, it is the biggest hydroelectric station at lower reaches of Yalong river. The length of underground factory building is 204.52m, the total height of it is 68.83m, the maximum of span clearance is 28.90m. Large-scale excavation in the underground factory of Jin-ping hydroelectric station has brought many kinds of destructive phenomenon, such as relaxation、spilling, providing a precious chance for study of unloading parameter about rock mass. As we all know, Southwest is the most important hydroelectric power base in China, the construction of the hydroelectric station mostly concentrate at high mountain and gorge area, basically and importantly, we must be familiar with the physical and mechanical character of the rock mass to guarantee to exploit safely、efficiently、quickly, in other words, we must understand the strength and deformation character of the rock mass. Based on enough fieldwork of geological investigation, we study the parameter of unloading rock mass on condition that we obtain abundant information, which is not only important for the construction of Jin-ping hydroelectric station, but also for the construction of other big hydroelectric station similar with Jin-ping. This paper adopt geological analysis、test data analysis、experience analysis、theory research and Artificial Neural Networks (ANN) brainpower analysis to evaluate the mechanical parameter, the major production is as follows: (1)Through the excavation of upper 5-layer of the underground powerhouse and the statistical classification of the main joints fractures exposed, We believe that there are three sets of joints, the first group is lay fracture, the second group and the fourth group are steep fracture. These provide a strong foundation for the following calculation of and analysis; (2)According to the in-situ measurement about sound wave velocity、displacement and anchor stress, we analyses the effects of rock unloading effect,the results show a obvious time-related character and localization features of rock deformation. We determine the depth of excavation unloading of underground factory wall based on this. Determining the rock mass parameters according to the measurement about sound wave velocity with characters of low- disturbing、dynamic on the spot, the result can really reflect the original state, this chapter approximately the mechanical parameters about rock mass at each unloading area; (3)Based on Hoek-Brown experienced formula with geological strength index GSI and RMR method to evaluate the mechanical parameters of different degree weathering and unloading rock mass about underground factory, Both of evaluation result are more satisfied; (4)From the perspective of far-field stress, based on the stress field distribution ideas of two-crack at any load conditions proposed by Fazil Erdogan (1962),using the strain energy density factor criterion (S criterion) proposed by Xue changming(1972),we establish the corresponding relationship between far-field stress and crack tip stress field, derive the integrated intensity criterion formula under the conditions of pure tensile stress among two line coplanar intermittent jointed rock,and establish the corresponding intensity criterion for the exploratory attempt; (5)With artificial neural network, the paper focuses on the mechanical parameters of rock mass that we concerned about and the whole process of prediction of deformation parameters, discusses the prospect of applying in assessment about the parameters of rock mass,and rely on the catalog information of underground powerhouse of Jinping I Hydropower Station, identifying the rock mechanics parameters intellectually,discusses the sample selection, network design, values of basic parameters and error analysis comprehensively. There is a certain significance for us to set up a set of parameters evaluation system,which is in construction of large-scale hydropower among a group of marble mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

China locates between the circum-Pacific and the Mediterranean-Himalayan seismic belt. The seismic activities in our country are very frequent and so are the collapses and slides of slope triggered by earthquakes. Many collapses and slides of slope take place mainly in the west of China with many earthquakes and mountains, especially in Sichuan and Yunnan Provinces. When a strong earthquake happening, the damage especially in mountains area caused by geological hazards it triggered such as rock collapses, landslides and debris flows is heavier than that it caused directly. A conclusion which the number of lives lost caused by geological hazards triggered by a strong earthquake in mountains area often accounts for a half even more of the total one induced by the strong earthquake can be made by consulting the statistical loss of several representative earthquakes. As a result, geological hazards such as collapses and slides of slope triggered by strong earthquakes attract wide attention for their great costs. Based on field geological investigation, engineering geological exploration and material data analysis, chief conclusions have been drawn after systematic research on formation mechanism, key inducing factors, dynamic characteristics of geological hazards such as collapses and slides of slope triggered by strong earthquakes by means of engineering geomechanics comprehensive analysis, finite difference numerical simulation test, in-lab dynamic triaxial shear test of rock, discrete element numerical simulation. Based on research on a great number of collapses and landslides triggered by Wenchuan and Xiaonanhai Earthquake, two-set methods, i.e. the method for original topography recovering based on factors such as lithology and elevation comparing and the method for reconstructing collapsing and sliding process of slope based on characteristics of seism tectonic zone, structural fissure, diameter spatial distribution of slope debris mass, propagation direction and mechanical property of seismic wave, have been gotten. What is more, types, formation mechanism and dynamic characteristics of collapses and slides of slope induced by strong earthquakes are discussed comprehensively. Firstly, collapsed and slided accumulative mass is in a state of heavily even more broken. Secondly, dynamic process of slope collapsing and sliding consists of almost four stages, i.e. broken, thrown, crushed and river blocked. Thirdly, classified according to failure forms, there are usually four types which are made up of collapsing, land sliding, land sliding-debris flowing and vibrating liquefaction. Finally, as for key inducing factors in slope collapsing and sliding, they often include characteristics of seism tectonic belts, structure and construction of rock mass, terrain and physiognomy, weathering degree of rock mass and mechanical functions of seismic waves. Based on microscopic study on initial fracturing of slope caused by seismic effect, combined with two change trends which include ratio of vertical vs. horizontal peak ground acceleration corresponding to epicentral distance and enlarging effect of peak ground acceleration along slope, key inducing factor of initial slope fracturing in various area with different epicentral distance is obtained. In near-field area, i.e. epicentral distance being less than 30 km, tensile strength of rock mass is a key intrinsic factor inducing initial fracturing of slope undergoing seismic effect whereas shear strength of rock mass is the one when epicentral distance is more than 30 km. In the latter circumstance, research by means of finite difference numerical simulation test and in-lab dynamic triaxial shear test of rock shows that initial fracture begins always in the place of slope shoulder. The fact that fracture strain and shear strength which are proportional to buried depth of rock mass in the place of slope shoulder are less than other place and peak ground acceleration is enlarged in the place causes prior failure at slope shoulder. Key extrinsic factors inducing dynamic fracture of slope at different distances to epicenter have been obtained through discrete element numerical simulation on the total process of collapsing and sliding of slope triggered by Wenchuan Earthquake. Research shows that combined action of P and S seismic waves is the key factor inducing collapsing and sliding of slope at a distance less than 64 km to initial epicenter along earthquake-triggering structure. What is more, vertical tensile action of P seismic wave plays a leading role near epicenter, whereas vertical shear action of S seismic wave plays a leading role gradually with epicentral distance increasing in this range. On the other hand, single action of P seismic wave becomes the key factor inducing collapsing and sliding of slope at a distance between 64 km and 216 km to initial epicenter. Horizontal tensile action of P seismic wave becomes the key factor gradually from combined action between vertical and horizontal tensile action of P seismic wave with epicentral distance increasing in this distance range. In addition, initial failure triggered by strong earthquakes begins almost in the place of slope shoulder. However, initial failure beginning from toe of slope relates probably with gradient and rock occurrence. Finally, starting time of initial failure in slope increases usually with epicentral distance. It is perhaps that the starting time increasing is a result of attenuating of seismic wave from epicenter along earthquake-triggering structure. It is of great theoretical and practical significance for us to construct towns and infrastructure in fragile geological environment along seism tectonic belts and conduct risk management on earthquake-triggered geological hazards by referring to above conclusions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Terrestrial carbon pool mainly consists of three parts: the active carbon pool of the vegetation,soil carbon pools and the lithosphere carbon pool of less activity. Under natural conditions,vegetation carbon pools,soil carbon exchange with atmospheric carbon pool directly,the lithosphere participate in the global carbon cycle by weathering Our research have coverd the soil organic carbon density,plant biomass (carbon density),plant net primary productivity of past 40 ka,and the magnetic susceptibility,grain size,weathering of silicate carbon consumption of past 140 ka. This study has achieved a number of conclusions as shown below. 1 Silicate weathering CO2 consumption in the long-term fluctuations with a similar deep-sea δ18O record,demonstate that it not only can be used as one of the instructions of terrestrial carbon pool,even can be used as indicators of global environmental change; silicate weathering CO2 consumption and susceptibility shown a clear relationship between lag or lead at different times,it maybe lies on how the climate change. 2 Soil carbon pools in line with the global climate on long-term,but the relationship between soil carbon density and climate change was not obvious in short-term change,generally lags behind the changes in other climatic proxies. 3 Carbon density of vegetation and other proxy indicators of climate have good consistency. In the study period,perform the cycle of glacial and interglacial completely,but because of the ancient vegetation of accurate information is difficult to obtain,it did not reflect rapid response to climate change. 4 Cooling events is conducive to soil organic carbon accumulation but not conducive to weathering and vegetation growth. High temperature environment is not conducive to the accumulation of soil organic carbon. 5 In the deglacial time from the last glacial maximum to the Holocene,weathering carbon consumption seems earlier than vegetation and soil organic carbon in the fluctuant increase.Does it imply that the effects of silicate weathering is an important factor to the global carbon cycle and global climate change? It is worth further research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The large ancient underground rock caverns in Longyou is an important component of grotto cultural. Current task facing the long-term preservation of these unmovable cultural relics is arduous and challenging. The deformation failure of the caverns' surrounding rock is deteriorating. The weathering velocity of these caverns is accelerating. With the strength of caverns' surrounding rock worsening, critical rocks were generated in local regions of the caverns' vault and posing a threat to the security of people passing by. Selection of a maximum-security route and construction a aisle in the caverns might be an efficient way to ensure the security of tourists and reach the target of long-term preservation. The deformation and destruction of the ancient underground caverns is primarily dominated by geological conditions and the special structure of caverns. Based on field investigation, several fundamental conditions for deformation and failure are recognized, and nine deformation and fracture patterns of the Longyou grotto are proposed. In order to judge the stability of caverns’ surrounding rock, the element safety coefficient method is presented. An explicit explanation for the meaning of the method is deduced using Mohr-Coulomb strength criterion. Numerical analyses are carried out in the dissertation through FLAC3D code. Through numerical analysis, the stress distribution regularities of the caverns’ roofs, piles and public side wall are analysed, and the stability properties of caverns’ surrounding rock are also assessed. At the same time, the element safety coefficient method is introduced to contrast the stability degree of different regions in caverns. The above analyses are bases for choosing the optimal tourism routes in the caverns of Longyou grotto. The impact of surface load on the stability of shallow buried cavities in Longyou grotto is evaluated, the results show that building load has significant influence on the stability of the No.1 cavern’s roof, pile and public side wall between the No.1 cavern and the No.2 cavern, pedestrian load has less impact on the stability of surrounding rock than building load. The principles for choosing the optimal tourism routes in the caverns are discussed. With these principles, the dissertation makes a systematic research on the geological analytic method, numerical analytic method and meeting tourism requirements method, which are used in selecting the optimal tourism routes in the caverns. In order to achieve the best effect in the process of tourism routes selection, the above three method are integrated through Theory of Engineering Geomechanics Meta-system(EGMS). According to field investigations, numerical analyses, tourism requirements and expert experiences, the optimal tourism routes through No.1 to No.5 cavern are determined preliminarily. The obtained results from the research work are useful for the security aisle's construction, they also have reference value to other projects in practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fluvio-lacustrine sequence in the Nihewan Basin is an important archive of late Pliocene-Pleistocene climate and environment changes in temperate northern China, which provides excellent sources of early human settlements in high latitude East Asia. The recent years have witnessed a considerable progress in the paleomagnetic dating of its stratigraphy, which has notably increased our understanding of a series of important issues such as the early human occupation in the Old World, the infilling history of the Nihewan Basin, and the chronological sequence of the Nihewan faunas. Up to now, the long-term paleoenvironmental changes directly retrieved from this basin, which might influence the evolution and expansion of early humans in the Nihewan Basin, are still poorly constrained, although several paleoclimatic records have been retrieved from this area. In this study, a combined mineral-magnetic and geochemical investigation was carried out on the fluvio-lacustrine sequence from the Dachangliang section at the eastern margin of the basin in order to reveal its rock magnetic and environmental magnetic characteristics and its implications for early human evolution in East Asia. The major findings and conclusions are listed as the following: First, there is an increased cooling coupled with an intensified aridification recorded in the fluvio-lacustrine sequence of the Dachangliang section. The cooling is related to an up-section decrease in propensity to chemical weathering as inferred from an increase in low-field susceptibility after cycling to 700 °C. Close to 700 °C, reacting chlorite is providing the iron source for newly formed very fine-grained ferrimagnetic minerals which enhances the susceptibility signal. The reactivity of chlorite after annealing at temperatures above 600 °C is documented with X-ray diffraction. Second, degrees of chemical weathering in the Nihewan Basin are further estimated by clay mineralogy (i.e. chlorite and illite contents and chlorite/illite ratio) and a series of major element proxies (i.e. Na2O/Al2O3 versus K2O/Al2O3 diagram, Al2O3-(CaO + Na2O)-K2O ternary diagram (A-CN-K), chemical index of alteration (CIA), (CaO + Na2O + MgO)/TiO2, (CaO + Na2O + MgO + K2O)/(TiO2 + Al2O3), CaO/Al2O3 and CaO/TiO2). The up-section decrease in propensity to chemical weathering suggested by the aforementioned rock mangetic measurement is further confirmed by these geochemical analyses. Combining the chemical weathering records from the Nihewan Basin, Chinese Loess Plateau, South China Sea and eastern China, we find that the consecutive decreasing trend in chemical weathering intensity during the late Cenozoic is ubiquitous across China. This pattern may result from a long-term decreasing East Asian summer monsoon and increasing East Asian winter monsoon, and thus a consecutive increasing of aridification and cooling in Asia during the Quaternary. Furthermore, the chemical weathering intensity increased from South China to North China during the Quaternary, in line with the decreasing East Asian summer monsoon and increasing East Asian winter monsoon and thus the gradually intensified aridification and cooling from South China to North China. Third, a combined mineral-magnetic and geochemical investigation provides evidences that the large-amplitude alterations of concentration of magnetic minerals mainly result from preservation/dissolution cycles of detrital magnetic minerals in alternately oxic and anoxic depositional environments. The preservation/dissolution model implies that the high-magnetic and low-magnetic cycles of this sedimentary sequence represent glacial and interglacial climate cycles, respectively. This contribute significnatly to our understanding of the link between climate and magnetic properties. Finally, the paleoclimatic implications of these rock magnetic and geochemical characteristics significantly increase our understanding of the general setting of early humans in high northern latitude in East Asia. We propose that the cold and dry climate may have contributed significantly to the expansion and adaptation of early humans, rather than bringing hardship, as is often thought. The relationship between magnetic properties and climate possibly provides valuable information on the climatic context of the Paleolithic sites in the basin, especially whether the occupation occurred during an interglacial or glacial period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface of the Earth is continuously undergoing changes as a result of weathering-erosion, plate tectonics and volcanic processes. Continental weathering-erosion with its complex rock-water interactions is the central process of global biochemical cycling of elements, and affects the long-term ocean atmosphere budget of carbon dioxide both through the consumption of carbonic acid during silicate weathering and through changes in the weathering and burial rates of organic carbon. Rates of the weathering-erosion depend on a variety of factors, in particular rock properties and chemical composition, climate (especially rainfall), structure, and elevation. They are quite variable on a regional scale. Thus, environmental changes in a region could be indicated by the history of weathering-erosion in the region. Recent attention has focused on increased silicate weathering of tectonically uplifted areas in the India-Asia collision zone as a possible cause for falling atmospheric CO_2 levels in the Cenozoic era. The wind blown dust deposits in the Loess Plateau is derived from the arid and semiarid regions in northwestern China, in turn, where the deposits have been derived from the Qinghai-Xizang Plateau and the high mountains around. Therefore, geochemistry of the wind blown loess-paleosol and red clay sequences may provide insight both to paleoenvironmental changes on the Loess Plateau, and to the uplift and weathering-erosion histories of the Qinghai-Xizang Plateau. In this paper, uranium-thorium series nuclides and cosmogenic ~(10)Be have been employed as tracers of weathering intensities and histories of the dust sediments in the Loess Plateau. Major elements, such as Na, Al, Fe etc., are also used to estimate degree of chemical alteration of the dust sediments and to rebuild the history of weathering on the Loess Plateau. First of all, using a low-level HPGe γ-ray detector, we measured U and Th series nuclides in 170 loess and paleosol samples from five sites in the Loess Plateau, going back 2.6 Ma. The results show that ~(238)U activities are disequilibrium with its daughter nuclide ~(230)Th in young loess-paleosol sequence, indicating that weathering was happened both in dust deposition site and in dust source regions. Using concentrations of ~(238)U and ~(232)Th in the samples, we estimated the amounts of ~(238)U leached out of from paleosols due to weathering. Further, based on analyses of ~(230)Th in paleosols deposited in the past ca. 140 ka, we determined when the paleosols weathered in the source regions. We conclude that most of the weathering in the dust-source regions may have occurred during the interglacials before dust deposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

River is a major component of the global surface water and CO2 cycles. The chemistry of river waters reveals the nature of weathering on a basin-wide scale and helps us understand the exogenic cycles of elements in the continent-river-ocean system. In particular, geochemical investigation of large river gives important information on the biogeochemical cycles of the elements, chemical weathering rates, physical erosion rates and CO2 consumption during the weathering of the rocks within the drainage basin. Its importance has led to a number of detailed geochemical studies on some of the world's large and medium-size river systems. Flowing in the south of China, the Xijiang River is the second largest river in the China with respect to its discharge, after the Yangtze River. Its headwaters drain the YunGui Plateau, where altitude is approximately 2000 meters. Geologically, the carbonate rocks are widely spread in the river drainage basin, which covers an area of about 0.17xl06 km2, i.e., 39% of the whole drainage basin. This study focuses on the chemistry of the Xijiang river system and constitutes the first geochemical investigation into major and trace elements concentrations for both suspended and dissolved loads of this river and its main tributaries, and Sr isotopic composition of the dissolved load is also investigated, in order to determine both chemical weathering and mechanical erosion rates. As compared with the other large rivers of the world, the Xijiang River is characterized by higher major element concentration. The dissolved major cations average 1.17, 0.33, 0.15, and 0.04 mmol I"1 for Ca, Mg, Na, and K, respectively. The total cation concentrations (TZ+) in these rivers vary between 2.2 and 4.4 meq I'1. The high concentration of Ca and Mg, high (Ca+Mg)/(Na+K) ratio (7.9), enormous alkalinity and low dissolved SiO2/HCO3 ratio (0.05) in river waters reveal the importance of carbonate weathering and relatively weak silicate weathering over the river drainage basin. The major elements in river water, such as the alkalis and alkaline-earths, are of different origins: from rain water, silicate weathering, carbonate and evaporite weathering. A mixing model based on mass budget equation is used in this study, which allows the proportions of each element derived from the different source to be calculated. The carbonate weathering is the main source of these elements in the Xijiang drainage basin. The contribution of rainwater, especially for Na, reaches to approximately 50% in some tributaries. Dissolved elemental concentration of the river waters are corrected for rain inputs (mainly oceanic salts), the elemental concentrations derived from the different rock weathering are calculated. As a consequence, silicate, carbonate and total rock weathering rates, together with the consumption rates of atmospheric CO2 by weathering of each of these lithologies have been estimated. They provide specific chemical erosion rates varying between 5.1~17.8 t/km2/yr for silicate, 95.5~157.2 t/km2/yr for carbonate, and 100.6-169.1 t/km2/yr for total rock, respectively. CO2 consumptions by silicate and carbonate weathering approach 13><109and 270.5x10 mol/yr. Mechanical denudation rates deduced from the multi-year average of suspended load concentrations range from 92-874 t/km2/yr. The high denudation rates are mainly attributable to high relief and heavy rainfall, and acid rain is very frequent in the drainage basin, may exceed 50% and the pH value of rainwater may be <4.0, result from SO2 pollution in the atmosphere, results in the dissolution of carbonates and aluminosilicates and hence accelerates the chemical erosion rate. The compositions of minerals and elements of suspended particulate matter are also investigated. The most soluble elements (e.g. Ca, Na, Sr, Mg) are strongly depleted in the suspended phase with respect to upper continent crust, which reflects the high intensity of rock weathering in the drainage basin. Some elements (e.g. Pb, Cu, Co, Cr) show positive anomalies, Pb/Th ratios in suspended matter approach 7 times (Liu Jiang) to 10 times (Nanpan Jiang) the crustal value. The enrichment of these elements in suspended matter reflects the intensity both of anthropogenic pollution and adsorption processes onto particles. The contents of the soluble fraction of rare earth elements (REE) in the river are low, and REE mainly reside in particulate phase. In dissolved phase, the PAAS-normalized distribution patterns show significant HREE enrichment with (La/Yb) SN=0.26~0.94 and Ce depletion with (Ce/Ce*) SN=0.31-0.98, and the most pronounced negative Ce anomalies occur in rivers of high pH. In the suspended phase, the rivers have LREE-enriched patterns relative to PAAS, with (La/Yb) SN=1 -00-1 .40. The results suggest that pH is a major factor controlling both the absolute abundances of REE in solution and the fractionation of REE of dissolved phase. Ce depletion in river waters with high pH values results probably from both preferential removal of Ce onto Fe-Mn oxide coating of particles and CeC^ sedimentation. This process is known to occur in the marine environment and may also occur in high pH rivers. Positive correlations are also observed between La/Yb ratio and DOC, HCO3", PO4", suggesting that colloids and (or) adsorption processes play an important role in the control of these elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphorus is an important biological and ecological element that to a certain degree constrains ecological environment and nutrient (including carbon) cycling. Marine sedimentary phosphorites are the principal phosphorus supply of the mankind. In the eastern to southern margins of the Yangtze Craton, South China, there are two phosphogenetic events at the Doushantuo stage of the Late Sinian and the Meishucun stage of the Early Cambrian respectively, corresponding two explosion events of life across the Precambrian\Cambrian boundary. Phosphorus ores from the Sinian and Cambrian phosphate in South China can be classified roughly into two categories, namely, grained and non-grained phosphorites. Grained phosphorites, hosted in dolostone type of phosphogenetic sequences and with larger industrial values, occur mainly in margins of the Upper Yangtze Platform, formed in shallow-water environments with high hydraulic energy and influenced by frequent sea-level change. Non-grained phosphorites, hosted principally in black-shale type of phosphogenetic sequences and with smaller industrial values, are distributed mainly in the Jiangnan region where deeper-water sub-basins with low hydraulic energy were prevailing at the time of phosphogenesis. Secular change ofδ~(13)C, δ~(18) O, ~(86)Sr/~(87)Sr values of carbonates from Sinian and Cambrian sequences were determined. A negative abnormal ofδ~(13)C, δ~(18)O values and positive abnormal of 86Sr/87Sr values from the fossiliferous section of the Lowest Cambrian Meishucun Formation implies life depopulation and following explosion of life across the PrecambriamCambrian boundary. Based on a lot of observations, this paper put forward a six-stage genetic model describing the whole formational process of industrial phosphorites: 1) Phosphorus was transported from continental weathering products and stored in the ocean; 2) dissolved phosphates in the seawater were enriched in specific deep seawater layer; 3) coastal upwelling currents took this phosphorus-rich seawater to a specific coastal area where phosphorus was captured by oceanic microbes; 4) clastic sediments in this upwelling area were enriched in phosphorus because of abundant phosphorus-rich organic matters and because of phosphorus absorption on grain surfaces; 5) during early diagenesis, the phosphorus enriched in the clastic sediments was released into interstitial water by decomposition and desorption, and then transported to the oxidation-reduction interface where authigenic phosphates were deposited and enriched; 6) such authigenic phosphate-rich layers were scoured, broken up, and winnowed in shallow-water environments resulting in phosphate enrichment. The Sinian-Cambrian phosphorites in South China are in many aspects comparable with coastal-upwelling phosphorites of younger geological ages, especially with phosphorites from modern coastal upwelling areas. That implies the similarities between the Sinian-Cambrian ocean and the modern ocean. Although Sinian-Cambrian oceanic life was much simpler than modern one, but similar oceanic planktons prevail, because oceanic planktons (particularly phytoplanktons) are crucial for phosphate enrichment related to coastal upwelling. It implies also a similar seawater-layering pattern between the Sinian-Cambrian ocean and the modern ocean. The two global phosphate-forming events and corresponding life-explosion events at the Sinian and Cambrian time probably resulted from dissolved-phosphate accumulation in seawater over a critical concentration during the Earth's evolution. Such an oceanic system with seawater phosphorus supersaturation is evidently unstable, and trends to return to normal state through phosphate deposition. Accordingly, this paper put forward a new conception of "normal state <=> phosphorus-supersaturation state" cycling of oceanic system. Such "normal state <=> phosphorus-supersaturation state" cycling was not only important for the three well-known global phosphate-forming events, also related to the critical moments of life evolution on the Earth. It might be of special significance. The favorable paleo-oceanic orientation in regard to coastal-upwelling phosphorite formation suggests a different orientation of the Yangtze Craton between the Sinian time and the present time (with a 135° clockwise difference), and a 25° anti-clockwise rotation of the Yangtze Craton from late Sinian to early Cambrian. During the Sinian-Cambrian time, the Yangtze Craton might be separated from the Cathaysia Block, but might be still associated with the North China Craton.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Grove Mountains, including 64 nunataks, is situated on an area about 3200km2 in the inland ice cap of east Antarctica in Princess Elizabeth land (72o20'-73°101S, 73°50'-75o40'E), between Zhongshan station and Dome A, about 450km away from Zhongshan station (69°22'S, 76°22'E). Many workers thought there was no pedogenesis in the areas because of the less precipitation and extreme lower temperature. However, during the austral summer in 1999-2000, the Chinaer 16 Antarctic expedition teams entered the inland East Antarctica and found three soil spots in the Southern Mount Harding, Grove Mountains, East Antarctica. It is the first case that soils are discovered in the inland in East Antarctica. Interestingly, the soils in this area show clay fraction migration, which is different from other cold desert soils. In addition, several moraine banks are discovered around the Mount Harding. The soil properties are discussed as below. Desert pavement commonly occurs on the three soil site surfaces, which is composed of pebbles and fragments formed slowly in typical desert zone. Many pebbles are subround and variegated. These pebbles are formed by abrasion caused by not only wind and wind selective transportation, but also salt weathering and thaw-freezing action on rocks. The wind blows the boulders and bedrocks with snow grains and small sands. This results in rock disintegration, paved on the soil surface, forming desert pavement, which protects the underground soil from wind-blow. The desert pavement is the typical feature in ice free zone in Antarctica. There developed desert varnish and ventifacts in this area. Rubification is a dominant process in cold desert Antarctic soils. In cold desert soils, rubification results in relatively high concentrations of Fed in soil profile. Stained depth increases progressively with time. The content of Fed is increasing up to surface in each profile. The reddish thin film is observed around the margin of mafic minerals such as biotite, hornblende, and magnetite in parent materials with the microscope analyzing on some soil profiles. So the Fed originates from the weathering of mafic minerals in soils. Accumulations of water-soluble salts, either as discrete horizons or dispersed within the soil, occur in the soil profiles, and the salt encrustations accumulate just beneath surface stones in this area. The results of X-ray diffraction analyses show that the crystalline salts consist of pentahydrite (MgSO4-5H2O), hexahydrite (MgSO4-6H2O), hurlbutite (CaBe2(PO4)2), bloedite (Na2Mg(S04)2-4H2O), et al., being mainly sulfate. The dominant cations in 1:5 soil-water extracts are Mg2+ and Na+, as well as Ca2+ and K+, while the dominant anion is SO42-, then NO3-, Cl- and HCO3-. There are white and yellowish sponge materials covered the stone underside surface, of which the main compounds are quartz (SiO2, 40.75%), rozenite (FeSOKkO, 37.39%), guyanaite (Cr2O3-1.5H2O, 9.30%), and starkeyite (MgSO4-4H2O, 12.56%). 4) The distribution of the clay fraction is related to the maximum content of moisture and salts. Clay fraction migration occurs in the soils, which is different from that of other cold desert soils. X-ray diffraction analyses show that the main clay minerals are illite, smectite, then illite-smectite, little kaolinite and veirniculite. Mica was changed to illite, even to vermiculite by hydration. Illite formed in the initial stage of weathering. The appearance of smectite suggests that it enriched in magnesium, but no strong eluviation, which belongs to cold and arid acid environment. 5) Three soil sites have different moisture. The effect moisture is in the form of little ice in site 1. There is no ice in site 2, and ice-cement horizon is 12 cm below the soil surface in site 3. Salt horizon is 5-10 cm up to the surface in Site 1 and Site 2, while about 26cm in site 3. The differentiation of the active layer and the permafrost are not distinct because of arid climate. The depth of active layer is about 10 cm in this area. Soils and Environment: On the basis of the characteristics of surface rocks, soil colors, horizon differentiation, salt in soils and soil depth, the soils age of the Grove Mountains is 0.5-3.5Ma. No remnants of glaciations are found on the soil sites of Mount Harding, which suggests that the Antarctic glaciations have not reached the soil sites since at least 0.5Ma, and the ice cap was not much higher than present, even during the Last Glacial Maximum. The average altitude of the contact line of level of blue ice and outcrop is 2050m, and the altitude of soil area is 2160m. The relative height deviation is about 110m, so the soils have developed and preserved until today. The parental material of the soils originated from alluvial sedimentary of baserocks nearby. Sporepollen were extracted from the soils, arbor pollen grains are dominant by Pinus and Betula, as well as a small amount Quercus, Juglans, Tilia and Artemisia etc. Judging from the shape and colour, the sporepollen group is likely attributed to Neogene or Pliocene in age. This indicates that there had been a warm period during the Neogene in the Grove Mountains, East Antarctica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geochemical analyses have been carried out on the samples taken from the last 250 ka wind-blown loess-paleosol sequences at Huanxian, Xifeng, Changwu, and Lantian in central Chinese Loess Plateau. The result shows: 1) that major changes in chemical composition of the loess-paleoso! sequences are due to leaching and reprecipitation of carbonates, and resulted from dust grain size changes rather than chemical weathering of silicates; 2) that Si/Ti, Si/AI, and Si/Fe ratios can be used as a proxy of dust deposition intensity, and Na/AI ratio can also be used as indicator of climatic changes in genera! rather than of the summer monsoon intensity. Our results show that chemical composition was controlled by dust deposition and weathering, and imply changes of climate and environment in the Loess Plateau during last 250,000 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we examined the surface features of quartz grains, the quartz oxygen isotopic ratios and the mineralogical compositions of the loess - paleosol - red clay sediments systematically. The surface features of quartz grains do not show significant changes of the dust deposits through the past seven million years. The particles were mainly created in the process of glacial and frost weathering of high mountains. Then the surfaces were altered in some degree by the flood and wind abrasion. The surface features registered all these processes. The assemblages of surface features changed for four times in the past seven million years, the occurrence ages are: 5.0~4.2MaBP, about 3.6MaBP, about 2.6MaBP and about 0.9MaBP, respectively. This may indicate that there were uplift events of the Tibetan Plateau during those times. The oxygen isotopic compositions of quartz in the sediments represent the oxygen isotopic compositions of the initial dusts because of the stable properties of quartz both physically and chemically. The oxygen isotopic compositions of 4~16um quartz changed significantly at about 2.6MaBP, decreasing from about 19.5%o to about 18.5%o. This decrease of quartz oxygen isotopic ratio suggests that the environments of the dust source areas changed at that time, or the range of dust source area changed at that time. The environmental change may result from the structural evolution of the Tibetan Plateau and global cooling at that time. The coarse fractions (>30μm) of the dust deposits were examined using the EDXA device for mineral identification. The quartz content has a decrease trend during 7~2MaBP, then increase rapidly at about 2MaBP. After 2MaBP, quartz content continues to decrease. The Ca-plagioclase content / quartz content ratio increase at about 3.6MaBP. The ratio shows a peak of 3-6 fold values at about 2.5~1.8MaBP, the cause of this is still unknown. The Ca-plagioclase content / quartz content ratio continues to increase after 1 MaBP. The flowing can be regarded as the conclusion remarks of this study: Some of the red clay sediment of the Chinese Loess Plateau (at least Lingtai and Jingchuan red clays) is eolian in origin. The quartz grains from dust deposits throughout the past seven million yeas showed the clues of glacial and frost processes. This indicates that the high mountains of western China reached a certain altitude to favor the glacial and/or frost processes at least seven millions years before. The weathering intensities of the past seven nnillion yeas have a decreasing trend. In about 5~4.5MaBP, the weathering is relatively weak, and the dust supply is relatively low. At about 3.6MaBP and 2.6MaBP, the dust supply increased significantly. The mineralogical composition, the quartz surface feature and the quartz oxygen isotope composition were influenced by the uplift of the Tibetan Plateau. The Plateau may have reached a certain altitude to generate the arid regions of inland China and favor the glacial and frost weathering. And it underwent a phased uplift, which have uplift events at about 3.6MaBP and 2.6MaBP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the basis of the geological analysis and rock mass toppling deformation and failure mechanism analysis of Longtan engineering left bank slope, the synthetic space-time analysis and influence factors analysis on the surface monitoring data and deep rock mass monitoring data of B-zone of left bank slope are carried on. At the same time, based on the monitoring data analysis in conjunction with the predecessor's mechanics analysis results, the deformation state of B-zone of the left bank slope is discussed and its stability is synthetically evaluated. The detailed research contents and results are as following: According to the monitoring drill histogram analysis of Longtan engineering left bank slope, numerical simulation analysis and model experimentation analysis of bedded counter-inclined steep slope, a new type of toppling deformation and failure mode is proposed, that is "up-slope warping". Then the deformation and failure mode of bedded counter-inclined steep slope is summarized as "down-slope toppling" type, "up-slope warping" type and "complex fold" type. On the basis of synthetic space-time analysis to surface monitoring data and deep rock mass deformation monitoring data of B-zone of Longtan left bank slope;, we can get the conclusion that there exists potential instability rock mass over 520m altitude, especially over 560m altitude of slope B, and the rock mass of around strong-weathering line or creep rock mass breaking band controls the deformation of the whole slope. 1. According to the synthetic space-time analysis and influence factors analysis to the surface monitoring data of B-zone of Longtan left bank slope, a dynamical index, accumulative total acceleration index, which is used to analyze the influence factors of slope surface deformation, is raised. The principle and method of accumulative acceleration index are explained, and the index can be used for the influence factors analysis of the similar slope. 2. Summarize the results of geologic analysis, monitoring analysis and mechanics analysis, the following conclusion can be gotten: the stability of B-zone of the slope is basically good. However, on the condition of drainage and slope toe loading engineering, there is still some creep deformation in the rock mass over 520m altitude, especially over 560m altitude. So, better measures of the monitoring and timely maintenance of the drainage system are suggested in the paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate the changes in the chemical weathering intensity of dust source region in Asia continent, ~(87)Sr/~(86)Sr ratios of acid-washed residues from the loess deposits in China and Tajikistan were analyzed, respectively. The results and conclusions are listed as below. 1. The oscillation of ~(87)Sr/~(86)Sr ratios of acid-insoluble residues in the Chinese Loess Plateau was mainly attributed to the chemical weathering intensity of the source region and the grain size. Counteracted the effect of particle size, the calibrated 87Sr/S6Sr ratio can be used as a proxy for the chemical weathering intensity of the source region. 2. The Sr/ Sr ratios of red clay-loess sequence from the Loess Plateau indicate that the chemical weathering intensity of the dust source region between 7.0 and 2.6 Ma is stronger than that in the Quaternary period. This also suggests a general decline in chemical weathering intensity of the source region from 2.6 Ma to the present. Such pattern is more remarkable since 1.0 Ma BP. 3. The ~(87)Sr/~(86)Sr ratios of the Tajik loess during 0.8-1.8 Ma is much more higher than those from 0.8 Ma to the present. This implies that the chemical weathering intensity of the source region in Central Asia is much stronger during 0.8-1.8 Ma than the period since 0.8 Ma. 4. The record of Sr isotope ratios from both sections shows an accelerating course of aridity of the Asian dust source region over the Quaternary period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ordos basin with profuse coal, petroleum, natural gas and others mineral resources create the comprehensiveness notice of earthling, and became one of studying hotspots for China and foreign countries geology, petroleum and natural gas geology's workman. Late years, having found commercial value of large middle type gas pools in the upper Palaeozoic group, which have exhibited a very good foreground for gas exploring and exploitation. Through the new gas exploring headway and the exploring course, the east of the basin should regard Ordovician weathering crust in the upper Palaeozoic group, tide flat and barrier-lagoon, deltaic deposit system in the lower Palaeozoic group as the major exploration and research emphasis. Furthermore, it has been found that much gas showed wells, which has gain quantitative industry gas flow wells, especially the new assessment invigorative harvest, and bode that the east of the Ordos basin possess major exploring potential. In regional tectonic, the research region mainly lay in the Yishan incline, and the east part involved the west part of Jinxi warping belt. In tectonic and sedimentary evolution, it had inherited the characteristic of whole basin. From Latepaleozoic to triassic epoch, it developed gradational the transition of sedimentary that changed from sea to land, and from river to lake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cross well seismic technique is a new type of geophysical method, which observes the seismic wave of the geologic body by placing both the source and receiver in the wells. By applying this method, it averted the absorption to high-frequency component of seismic signal caused by low weathering layers, thus, an extremely high-resolution seismic signal can be acquired. And extremely fine image of cross well formations, structure, and reservoir can be achieved as well. An integrated research is conducted to the high-frequency S-wave and P-wave data and some other data to determine the small faults, small structure and resolving the issues concerning the thin bed and reservoir's connectivity, fluid distribution, steam injection and fracture. This method connects the high-resolution surface seismic, logging and reservoir engineering. In this paper, based on the E & P situation in the oilfield and the theory of geophysical exploration, a research is conducted on cross well seismic technology in general and its important issues in cross well seismic technology in particular. A technological series of integrated field acquisition, data processing and interpretation and its integrated application research were developed and this new method can be applied to oilfield development and optimizing oilfield development scheme. The contents and results in this paper are as listed follows: An overview was given on the status quo and development of the cross well seismic method and problems concerning the cross well seismic technology and the difference in cross well seismic technology between China and international levels; And an analysis and comparison are given on foreign-made field data acquisition systems for cross-well seismic and pointed out the pros and cons of the field systems manufactured by these two foreign companies and this is highly valuable to import foreign-made cross well seismic field acquisition system for China. After analyses were conducted to the geometry design and field data for the cross well seismic method, a common wave field time-depth curve equation was derived and three types of pipe waves were discovered for the first time. Then, a research was conducted on the mechanism for its generation. Based on the wave field separation theory for cross well seismic method, we believe that different type of wave fields in different gather domain has different attributes characteristics, multiple methods (for instance, F-K filtering and median filtering) were applied in eliminating and suppressing the cross well disturbances and successfully separated the upgoing and downgoing waves and a satisfactory result has been achieved. In the area of wave field numerical simulation for cross well seismic method, a analysis was conducted on conventional ray tracing method and its shortcomings and proposed a minimum travel time ray tracing method based on Feraiat theory in this paper. This method is not only has high-speed calculation, but also with no rays enter into "dead end" or "blinded spot" after numerous iterations and it is become more adequate for complex velocity model. This is first time that the travel time interpolation has been brought into consideration, a dynamic ray tracing method with shortest possible path has been developed for the first arrivals of any complex mediums, such as transmission, diffraction and refraction, etc and eliminated the limitation for only traveling from one node to another node and increases the calculation accuracy for minimum travel time and ray tracing path and derives solution and corresponding edge conditions to the fourth-order differential sonic wave equation. The final step is to calculate cross well seismic synthetics for given source and receivers from multiple geological bodies. Thus, real cross-well seismic wave field can be recognized through scientific means and provides important foundation to guide the cross well seismic field geometry designing. A velocity tomographic inversion of the least square conjugated gradient method was developed for cross well seismic velocity tomopgraphic inversion and a modification has been made to object function of the old high frequency ray tracing method and put forward a thin bed oriented model for finite frequency velocity tomographic inversion method. As the theory model and results demonstrates that the method is simple and effective and is very important in seismic ray tomographic imaging for the complex geological body. Based on the characteristics of the cross well seismic algorithm, a processing flow for cross well seismic data processing has been built and optimized and applied to the production, a good section of velocity tomopgrphic inversion and cross well reflection imaging has been acquired. The cross well seismic data is acquired from the depth domain and how to interprets the depth domain data and retrieve the attributes is a brand new subject. After research was conducted on synthetics and trace integration from depth domain for the cross well seismic data interpretation, first of all, a research was conducted on logging constraint wave impedance of cross well seismic data and initially set up cross well seismic data interpretation flows. After it applied and interpreted to the cross well seismic data and a good geological results has been achieved in velocity tomographic inversion and reflection depth imaging and a lot of difficult problems for oilfield development has been resolved. This powerful, new method is good for oilfield development scheme optimization and increasing EOR. Based on conventional reservoir geological model building from logging data, a new method is also discussed on constraining the accuracy of reservoir geological model by applying the high resolution cross well seismic data and it has applied to Fan 124 project and a good results has been achieved which it presents a bight future for the cross well seismic technology.