954 resultados para Water Use Efficiency


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maps depicting spatial pattern in the stability of summer greenness could advance understanding of how forest ecosystems will respond to global changes such as a longer growing season. Declining summer greenness, or “greendown”, is spectrally related to declining near-infrared reflectance and is observed in most remote sensing time series to begin shortly after peak greenness at the end of spring and extend until the beginning of leaf coloration in autumn,. Understanding spatial patterns in the strength of greendown has recently become possible with the advancement of Landsat phenology products, which show that greendown patterns vary at scales appropriate for linking these patterns to proposed environmental forcing factors. This study tested two non-mutually exclusive hypotheses for how leaf measurements and environmental factors correlate with greendown and decreasing NIR reflectance across sites. At the landscape scale, we used linear regression to test the effects of maximum greenness, elevation, slope, aspect, solar irradiance and canopy rugosity on greendown. Secondly, we used leaf chemical traits and reflectance observations to test the effect of nitrogen availability and intrinsic water use efficiency on leaf-level greendown, and landscape-level greendown measured from Landsat. The study was conducted using Quercus alba canopies across 21 sites of an eastern deciduous forest in North America between June and August 2014. Our linear model explained greendown variance with an R2=0.47 with maximum greenness as the greatest model effect. Subsequent models excluding one model effect revealed elevation and aspect were the two topographic factors that explained the greatest amount of greendown variance. Regression results also demonstrated important interactions between all three variables, with the greatest interaction showing that aspect had greater influence on greendown at sites with steeper slopes. Leaf-level reflectance was correlated with foliar δ13C (proxy for intrinsic water use efficiency), but foliar δ13C did not translate into correlations with landscape-level variation in greendown from Landsat. Therefore, we conclude that Landsat greendown is primarily indicative of landscape position, with a small effect of canopy structure, and no measureable effect of leaf reflectance. With this understanding of Landsat greendown we can better explain the effects of landscape factors on vegetation reflectance and perhaps on phenology, which would be very useful for studying phenology in the context of global climate change

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’utilisation rationnelle de l’eau est une préoccupation croissante. Il importe d’optimiser la gestion des irrigations du fraisier à jours neutres afin de répondre adéquatement au besoin de la plante tout en diminuant la pression du secteur agricole sur l’eau. Dans les sols de l’île d’Orléans, la fraction des particules de sol supérieure à 2 mm peut varier de 15 à 30%. L’eau s’écoule principalement verticalement sous le tube de goutte-à-goutte et le mouvement vertical rapide de l’eau entraine un assèchement du sol en bordure de l’andain et une perte de nutriments. Diverses techniques combinées à l’utilisation de tensiomètres peuvent être envisagées afin d’améliorer l’efficacité d’utilisation de l’eau d’irrigation (EUEI) dans ce type de sol. L’irrigation fractionnée, l’ajustement du seuil de déclenchement de l’irrigation selon l’ETc prévisionnelle, l’installation de matelas capillaires sous la zone racinaire et un système de production hors-sol sur butte profilée ont été testés. Le projet avait pour objectif de déterminer l’effet des techniques présentées sur le développement des fraisiers à jours neutres, le rendement, la qualité des fruits, l’EUEI et les propriétés physico-chimiques du sol. Un dispositif en bloc aléatoire comportant cinq traitements a été mis en place à Saint-Jean-de-l’Île-d’Orléans durant deux saisons de production. Le fractionnement de l’irrigation et le système de production hors-sol ont engendré une augmentation non significative du rendement vendable de 10% et 12%, respectivement, par rapport au traitement témoin. Le système hors-sol a toutefois permis d’augmenter significativement de 86% le rendement vendable durant le premier mois de production. L’EUEI a été améliorée par tous les traitements. En raison de sa simplicité et de sa tendance à augmenter le rendement, l’irrigation fractionnée est recommandée pour le type de sol à l’étude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification of genotypes for drought tolerance has a great importance in breeding programs. The aim of this study was to characterize genotypes of beans in response to drought tolerance in different reproductive stages through physiologic, agronomic and molecular analysis. The experiment was conducted in greenhouse, using a randomized block design with four replicates; 10 cultivars: ANFC 9, ANFP 110, BRS Esplendor, BRSMG Realce, IPR Siriri, IPR Tangará, IPR Tuiuiu, IPR Uirapuru, IAC Imperador and IAC Milênio under two conditions of irrigation: plants irrigated during their entire life cycle, and plants under irrigation suppression in the reproductive stage (R7) until 16% of field capacity, when the irrigation was restored. In the last four days of stress, the gas exchanges were analyzed, and in the last day of stress was analyzed the percentage of closed stomata in the abaxial surface of the leaves, collected in different times of the day (9h, 12h, 15h and 18h). Additionally, plant samples were collected for the following analysis: fresh and dry mass of leaves, stems and legumes, and proline content in leaves and roots. The plants were harvested at the physiological maturity and the yield components and grain yield were determined. In addition, in order to identify polymorphisms in the sequences of promoters and genes related to drought, seven pairs of primers were tested on the group of genotypes. The drought susceptibility indexes (ISS) ranged from 0.65 to 1.10 in the group of genotypes, which the lowest values observed were for IAC Imperador (0.65) and BRS Esplendor (0.87), indicating the ability of these two genotypes to maintain grain yield under water stress condition. All genotypes showed reduction in yield components under water stress. IAC Imperador (43.4%) and BRS Esplendor (60.6%) had the lowest reductions in productivity and kept about 50% of the stomata closed during all the different times evaluated at last day of irrigation suppression. IAC Imperador showed greater water use efficiency and CO2 assimilation rate under drought stress. IPR Tuiuiú, IPR Tangará and IAC Imperador had the highest proline concentrations in the roots. Under water stress condition, there was a strong positive correlation (0.696) between the percentage of stomata closed with the number of grains per plant (0.696) and the fresh mass of leaves (0.731), the maximum percentage of stomata closed 73.71% in water stress. The accumulation of proline in the root was the character that most contributed to the divergence between the genotypes under water deficit, but not always the genotypes that have accumulated more proline were the most tolerant. The polymorphisms in DNA of coding and promoting sequences of transcription factors studied in this experiment did not discriminate tolerant genotypes from the sensitive ones to water stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influences of clearing native vegetation (Caatinga) in contour strips at 25 cm vertical interval on evaporation losses in cleared strips, annual runoff efficiency and annuall soil loss on gently sloped micro-waterheds in the arid zones of Northeast Brazil are reported. The alternate native vegetation (Caatinga) strips function very effectively as windbreaks thus reducing evaporation losses substantially in the leeward cleared strips. The runoff measured at the micro-watershed with cleared strips was many-fold lower than the runoff obtained at a completely denuded watershed even when it was protected by narrow based channel terraces. However, the annual runoff efficiency can be significantly increased in a strip cleared watershed if narrow based channel terraces are provided on the lower side of cleared strips. The annual soil losses in strip cleared watersheds as well as completely denuded waterhed of gentle slopes were negligible. Thus clearing land in alternate contour strips on a micro-watersheds shall substantially improve crop water use efficiency without creating any significant erosion problems. Additionally this treatment will increase runoff for water harvesting for irrigation purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scarcity of freshwater due to recurrent drought threatens the sustainable crop production in semi-arid regions of Ethiopia. Deficit irrigation is thought to be one of the promising strategies to increase water use efficiency (WUE) under scarce water resources. A study was carried out to investigate the effect of alternate furrow irrigation (AFI), deficit irrigation (DI) and full irrigation (FI) on marketable fruit yield, WUE and physio-chemical quality of four fresh-market tomato cultivars (Fetan, Chali, Cochoro and ARP Tomato d2) in 2013 and 2014. The results showed that marketable yield, numbers of fruits per plant and fruit size were not significantly affected by AFI and DI irrigations. WUE under AFI and DI increased by 36.7% and 26.1%, respectively with close to 30% irrigation water savings achieved. A different response of cultivars to irrigation treatments was found for marketable yield, number of fruits and fruit size, WUE, total soluble solids (TSS) of the fruit juice, titratable acids (TA) and skin thickness. Cochoro and Fetan performed well under both deficit irrigation treatments exhibited by bigger fruit size which led to higher WUE. ARP Tomato d2 showed good yields under well-watered conditions. Chali had consistently lower marketable fruit yield and WUE. TSS and TA tended to increase under deficit irrigation; however, the overall variations were more explained by irrigation treatments than by cultivars. It was shown that AFI is a suitable deficit irrigation practice to increase fresh yield, WUE and quality of tomato in areas with low water availability. However, AFI requires suitable cultivars in order to exploit its water saving potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the variation in physiological response to deficit irrigation together with better knowledge on physiological characteristics of different genotypes that contribute to drought adaptation mechanisms would be helpful in transferring different irrigation technologies to farmers. A field experiment was carried to investigate the physiological response of four tomato cultivars (Fetan, Chali, Cochoro and ARP Tomato d2) to moderate water deficit induced by alternate furrow irrigation (AFI) and deficit irrigation (DI) under semi-arid condition of Ethiopia during 2013 and 2014. The study also aimed at identifying physiological attributes to the fruit yield of tomato under different deficit irrigation techniques. A factorial combination of irrigation treatments and cultivar were arranged in a complete randomized design with three replicates. Results showed that stomatal conductance (g_s) was significantly reduced while photosynthetic performance measured as chlorophyll fluorescence (Fv’/Fm’), relative water content (RWC) and leaf ash content remained unaffected under deficit irrigations. Significant differences among cultivars were found for water use efficiency (WUE), g_s, chlorophyll content (Chl_SPAD), normal difference vegetation index (NDVI), leaf ash content and fruit growth rate. However, cultivar differences in WUE were more accounted for by the regulation of g_s, therefore, g_s could be useful for breeders for screening large numbers of genotypes with higher WUE under deficit irrigation condition. The study result also demonstrated that cultivar with traits that contribute to achieve higher yields under deficit irrigation strategies has the potential to increase WUE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

tWater use control methods and water resources planning are of high priority. In irrigated agriculture, theright way to save water is to increase water use efficiency through better management. The present workvalidates procedures and methodologies using remote sensing to determine the water availability in thesoil at each moment, giving the opportunity for the application of the water depth strictly necessaryto optimise crop growth (optimum irrigation timing and irrigation amount). The analysis is applied tothe Irrigation District of Divor, Évora, using 7 experimental plots, which are areas irrigated by centre-pivot systems, cultivated to maize. Data were determined from images of the cultivated surface obtainedby satellite and integrated with atmosphere and crop parameters to calculate biophysical indicatorsand indices of water stress in the vegetation—Normalized Difference Vegetation Index (NDVI), Kc, andKcb. Therefore, evapotranspiration (ETc) was estimated and used to calculate crop water requirement,together with the opportunity and the amount of irrigation water to allocate. Although remote sensingdata available from satellite imagery presented some practical constraints, the study could contribute tothe validation of a new methodology that can be used for irrigation management of a large irrigated area,easier and at lower costs than the traditional FAO recommended crop coefficients method. The remotesensing based methodology can also contribute to significant saves of irrigation water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis first explored and evaluated some of the most used models that were developed to account for the effect of CO2 on evapotranspiration. This review depicts the complexity of the modeling procedure and underlines the advantages and shortcomings of each model. Then, the projected climate change in the near future (2021-2050) in different locations in Emilia-Romagna (Italy) was studied, with an emphasis on the opposite effect of an increase in both air temperature and CO2 levels on ETo. The case study used reanalysis data as a surrogate to historical weather stations measurements and an ensemble of regional climate models (RCMs) for the future projections. Results show that higher CO2 levels moderated the increase in ETo that accompanies an increase in air temperature, taking in consideration the change in other weather variables i.e. solar radiation, wind speed and dew point temperature. The outcomes of this study show that considering the CO2 fertilization effect when calculating reference evapotranspiration might give a more realistic estimation of water use efficiency and irrigation requirements in Emilia-Romagna and a better analysis of the future availability and distribution of water resources in the region. Finally, data from a model forecasting reference evapotranspiration (FRET) and the different variables involved in its calculation for the state of California (USA) were compared with similar data from the regional weather station network (CIMIS) to evaluate their accuracy and reliability. The evaluation was done in locations with different microclimates and included also sample irrigation schedules developed using FRET ETo. The obtained results demonstrate that FRET ETo forecasts are a viable alternative to traditional ETo measurements with some differences depending on the climatic condition of the location considered in this study. This implies that FRET could be replicated in other areas with similar climate settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays there are several ways of supplying hot water for showers in residential buildings. One of them is the use of electric storage water heaters (boilers). This equipment raises the water temperature in a reservoir (tank) using the heat generated by an electric resistance. The behavior of this equipment in Brazil is still a research object and there is not a standard in the country to regulate its efficiency. In this context, an experimental program was conducted aiming to collect power consumption data to evaluate its performance. The boilers underwent an operation cycle to simulate a usage condition aiming to collect parameters for calculating the efficiency. This 1-day cycle was composed of the following phases: hot water withdrawal, reheating and standby heat loss. The methods allowed the identification of different parameters concerning the boilers work, such as: standby heat loss in 24 h, hot water withdrawal rate, reheating time and energy efficiency. The average energy efficiency obtained was of 75%. The lowest efficiency was of 62% for boiler 2 and the highest was of 85% for boiler 9. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional wisdom in many agricultural systems across the world is that farmers cannot, will not, or should not pay the full costs associated with surface water delivery. Across Organisation for Economic Co-operation and Development (OECD) countries, only a handful can claim complete recovery of operation, maintenance, and capital costs; across Central and South Asia, fees are lower still, with farmers in Nepal, India, and Kazakhstan paying fractions of a U.S. penny for a cubic meter of water. In Pakistan, fees amount to roughly USD 1-2 per acre per season. However, farmers in Pakistan spend orders of magnitude more for diesel fuel to pump groundwater each season, suggesting a latent willingness to spend for water that, under the right conditions, could potentially be directed toward water-use fees for surface water supply. Although overall performance could be expected to improve with greater cost recovery, asymmetric access to water in canal irrigation systems leaves the question open as to whether those benefits would be equitably shared among all farmers in the system. We develop an agent-based model (ABM) of a small irrigation command to examine efficiency and equity outcomes across a range of different cost structures for the maintenance of the system, levels of market development, and assessed water charges. We find that, robust to a range of different cost and structural conditions, increased water charges lead to gains in both efficiency and concomitant improvements in equity as investments in canal infrastructure and system maintenance improve the conveyance of water resources further down watercourses. This suggests that, under conditions in which (1) farmers are currently spending money to pump groundwater to compensate for a failing surface water system, and (2) there is the possibility that through initial investment to provide perceptibly better water supply, genuine win-win solutions can be attained through higher water-use fees to beneficiary farmers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mara River Basin (MRB) is endowed with pristine biodiversity, socio-cultural heritage and natural resources. The purpose of my study is to develop and apply an integrated water resource allocation framework for the MRB based on the hydrological processes, water demand and economic factors. The basin was partitioned into twelve sub-basins and the rainfall runoff processes was modeled using the Soil and Water Assessment Tool (SWAT) after satisfactory Nash-Sutcliff efficiency of 0.68 for calibration and 0.43 for validation at Mara Mines station. The impact and uncertainty of climate change on the hydrology of the MRB was assessed using SWAT and three scenarios of statistically downscaled outputs from twenty Global Circulation Models. Results predicted the wet season getting more wet and the dry season getting drier, with a general increasing trend of annual rainfall through 2050. Three blocks of water demand (environmental, normal and flood) were estimated from consumptive water use by human, wildlife, livestock, tourism, irrigation and industry. Water demand projections suggest human consumption is expected to surpass irrigation as the highest water demand sector by 2030. Monthly volume of water was estimated in three blocks of current minimum reliability, reserve (>95%), normal (80–95%) and flood (40%) for more than 5 months in a year. The assessment of water price and marginal productivity showed that current water use hardly responds to a change in price or productivity of water. Finally, a water allocation model was developed and applied to investigate the optimum monthly allocation among sectors and sub-basins by maximizing the use value and hydrological reliability of water. Model results demonstrated that the status on reserve and normal volumes can be improved to ‘low’ or ‘moderate’ by updating the existing reliability to meet prevailing demand. Flow volumes and rates for four scenarios of reliability were presented. Results showed that the water allocation framework can be used as comprehensive tool in the management of MRB, and possibly be extended similar watersheds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At present, the cement industry generates approximately 5% of the world`s anthropogenic CO(2) emissions. This share is expected to increase since demand for cement based products is forecast to multiply by a factor of 2.5 within the next 40 years and the traditional strategies to mitigate emissions, focused on the production of cement, will not be capable of compensating such growth. Therefore, additional mitigation strategies are needed, including an increase in the efficiency of cement use. This paper proposes indicators for measuring cement use efficiency, presents a benchmark based on literature data and discusses potential gains in efficiency. The binder intensity (bi) index measures the amount of binder (kg m(-3)) necessary to deliver 1 MPa of mechanical strength, and consequently express the efficiency of using binder materials. The CO(2) intensity index (ci) allows estimating the global warming potential of concrete formulations. Research benchmarks show that bi similar to 5 kg m(-3) MPa(-1) are feasible and have already been achieved for concretes >50 MPa. However, concretes with lower compressive strengths have binder intensities varying between 10 and 20 kg m(-3) MPa(-1). These values can be a result of the minimum cement content established in many standards and reveal a significant potential for performance gains. In addition, combinations of low bi and ci are shown to be feasible. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate how the summer and winter conditions affect the photosynthesis and water relations of well-watered orange trees, considering the diurnal changes in leaf gas exchange, chlorophyll (Chl) fluorescence, and leaf water potential (I) of potted-plants growing in a subtropical climate. The diurnal pattern of photosynthesis in young citrus trees was not significantly affected by the environmental changes when compared the summer and winter seasons. However, citrus plants showed higher photosynthetic performance in summer, when plants fixed 2.9 times more CO(2) during the diurnal period than in the winter season. Curiously, the winter conditions were more favorable to photosynthesis of citrus plants, when considering the air temperature (< 29 A degrees C), leaf-to-air vapor pressure difference (< 2.4 kPa) and photon flux density (maximum values near light saturation) during the diurnal period. Therefore, low night temperature was the main environmental element changing the photosynthetic performance and water relations of well-watered plants during winter. Lower whole-plant hydraulic conductance, lower shoot hydration and lower stomatal conductance were noticed during winter when compared to the summer season. In winter, higher ratio between the apparent electron transport rate and leaf CO(2) assimilation was verified in afternoon, indicating reduction in electron use efficiency by photosynthesis. The high radiation loading in the summer season did not impair the citrus photochemistry, being photoprotective mechanisms active. Such mechanisms were related to increases in the heat dissipation of excessive light energy at the PSII level and to other metabolic processes consuming electrons, which impede the citrus photoinhibition under high light conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The water-wind crisscross region of the Loess Plateau in China is comprised of 17.8 million hectares of highly erodible soil under limited annual rainfall. This requires a sustainable water balance for the restoration of dryland ecosystems to reduce and manage soil erosion. In this region, alfalfa has been one of the main legumes grown to minimize soil erosion. However, alfalfa yields were significantly lower in years of reduced rainfall suggesting that high water use and deep rooting alfalfa make it an unsustainable crop due to the long-term decline in soil water storage and productivity. Our objectives in this Study were to evaluate the soil water balance of Loess Plateau soils during vegetative restoration and to evaluate practices that prevent soil desiccation and promote ecosystem restoration and sustainability. Field observations of soil moisture recovery and soil erosion were carried out for five years after alfalfa was replaced with different crops and with bare soil. Soil water content changes in cropland, rangeland, and bare soil were tracked over several years, using a water balance approach. Results indicate that growing forages significantly reduced runoff and sediment transport. A forage-food-crop rotation is a better choice than other cropping systems for achieving sustainable productivity and preventing soil erosion and desiccation. However, economic considerations have prevented its widespread adoption by local farmers. Alternatively, this study recommends consideration of grassland crops or forest ecosystems to provide a sustainable water balance in the Loess Plateau of China. (C) 2009 Elsevier B.V. All rights reserved.