937 resultados para Washington (State)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The scope of this technical report is to establish the mechanisms by which the eastbound lanes of Interstate 82 at mile post (MP) 91.9 near Benton City continue to deform. Within the Washington State Department of Transportation (WSDOT), the area is known as the Prosser Landslide and has been an ongoing concern since the 1980s. Results from previous technical investigations have been conflicted or inconclusive as to whether landslide movement persists beneath or through the shear key-buttress or that pavement distress is related to swelling of a clay-rich unit that underlies the slope and interstate. For this report, the following steps were taken. First, I conducted a desk review of archived reports, memos, data, and drill logs from the original construction of I-82 and previous geotechnical investigations commissioned by WSDOT. Findings of this desk review are reported in Part III. Second, WSDOT drillers drilled two new boreholes at the Prosser Landslide site above the buttress and instrumentation was installed within the boreholes. Borehole logs produced from the 2013 drilling can be found in Appendix A of this report. Material retrieved from the suspected failure zone during drilling was tested at the WSDOT Materials Lab by WSDOT personnel for its mechanical properties including Atterberg limits, grain-size analysis, and residual shear strength (Appendix B). Samples were also analyzed for mineral content using X -ray powder diffraction (XRD). These data and observations are reported in Part III and Appendix C. Finally, using drill logs produced by WSDOT from the latest drilling and from historic drilling campaigns, I constructed a 2-D geologic model of the landslide site. This model is the basis for slope stability analysis reported in Part IV and Appendix D. This study concludes that the deformation observed in the eastbound lanes of I-82 could be the result of continued landslide movement, despite previous remediation efforts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mountain ranges and coastlines of Washington State have steep slopes, and they are susceptible to landslides triggered by intense rainstorms, rapid snow melts, earthquakes, and rivers and waves removing slope stability. Over a 30-year timespan (1984-2014 and includes State Route (SR) 530), a total of 28 deep-seated landslides caused 300 million dollars of damage and 45 deaths (DGER, 2015). During that same timeframe, ten storm events triggered shallow landslides and debris flows across the state, resulting in nine deaths (DGER, 2015). The loss of 43 people, due to the SR 530 complex reactivating and moving at a rate and distance unexpected to residents, highlighted the need for an inventory of the stateís landslides. With only 13% of the state mapped (Lombardo et al., 2015), the intention of this statewide inventory is to communicate hazards to citizens and decision makers. In order to compile an accurate and consistent landslide inventory, Washington needs to adopt a graphic information system (GIS) based mapping protocol. A mapping protocol provides consistency for measuring and recording information about landslides, including such information as the type of landslide, the material involved, and the size of the movement. The state of Oregon shares similar landslide problems as Washington, and it created a GIS-based mapping protocol designed to inform its residents, while also saving money and reducing costly hours in the field (Burns and Madin, 2009). In order to determine if the Oregon Department of Geology and Mineral Industries (DOGAMI) protocol, developed by Burns and Madin (2009), could serve as the basis for establishing Washingtonís protocol, I used the office-based DOGAMI protocol to map landslides along a 40-50 km (25-30 mile) shoreline in Thurston County, Washington. I then compared my results to the field-based landslide inventory created in 2009 by the Washington Division of Geology and Earth Resources (DGER) along this same shoreline. If the landslide area I mapped reasonably equaled the area of the DGER (2009) inventory, I would consider the DOGAMI protocol useful for Washington, too. Utilizing 1m resolution lidar flown for Thurston County in 2011 and a GIS platform, I mapped 36 landslide deposits and scarp flanks, covering a total area of 879,530 m2 (9,467,160 ft2). I also found 48 recent events within these deposits. With an exception of two slides, all of the movements occurred within the last fifty years. Along this same coastline, the DGER (2009) recorded 159 individual landslides and complexes, for a total area of 3,256,570 m2 (35,053,400 ft2). At a first glance it appears the DGER (2009) effort found a larger total number and total area of landslides. However, in addition to their field inventory, they digitized landslides previously mapped by other researchers, and they did not field confirm these landslides, which cover a total area of 2,093,860 m2 (22,538,150 ft2) (DGER, 2009). With this questionable landslide area removed and the toes and underwater landslides accounted for because I did not have a bathymetry dataset, my results are within 6,580 m2 (70,840 ft2) of the DGERís results. This similarity shows that the DOGAMI protocol provides a consistent and accurate approach to creating a landslide inventory. With a few additional modifications, I recommend that Washington State adopts the DOGAMI protocol. Acquiring additional 1m lidar and adopting a modified DOGAMI protocol poises the DGER to map the remaining 87% of the state, with an ultimate goal of informing citizens and decision makers of the locations and frequencies of landslide hazards on a user-friendly GIS platform.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Island County is located in the Puget Sound of Washington State and includes several islands, the largest of which is Whidbey Island. Central Whidbey Island was chosen as the project site, as residents use groundwater for their water supply and seawater intrusion near the coast is known to contaminate this resource. In 1989, Island County adopted a Saltwater Intrusion Policy and used chloride concentrations in existing wells in order to define and map “risk zones.” In 2005, this method of defining vulnerability was updated with the use of water level elevations in conjunction with chloride concentrations. The result of this work was a revised map of seawater intrusion vulnerability that is currently in use by Island County. This groundwater management strategy is defined as trigger-level management and is largely a reactive tool. In order to evaluate trends in the hydrogeologic processes at the site, including seawater intrusion under sea level rise scenarios, this report presents a workflow where groundwater flow and discharge to the sea are quantified using a revised conceptual site model. The revised conceptual site model used several simplifying assumptions that allow for first-order quantitative predictions of seawater intrusion using analytical methods. Data from water well reports included lithologic and well construction information, static water levels, and aquifer tests for specific capacity. Results from specific capacity tests define the relationship between discharge and drawdown and were input for a modified Theis equation to solve for transmissivity (Arihood, 2009). Components of the conceptual site model were created in ArcGIS and included interpolation of water level elevation, creation of groundwater basins, and the calculation of net recharge and groundwater discharge for each basin. The revised conceptual site model was then used to hypothesize regarding hydrogeologic processes based on observed trends in groundwater flow. Hypotheses used to explain a reduction in aquifer thickness and hydraulic gradient were: (1) A large increase in transmissivity occurring near the coast. (2) The reduced aquifer thickness and hydraulic gradient were the result of seawater intrusion. (3) Data used to create the conceptual site model were insufficient to resolve trends in groundwater flow. For Hypothesis 2, analytical solutions for groundwater flow under Dupuit assumptions were applied in order to evaluate seawater intrusion under projected sea level rise scenarios. Results indicated that a rise in sea level has little impact on the position of a saltwater wedge; however, a reduction in recharge has significant consequences. Future work should evaluate groundwater flow using an expanded monitoring well network and aquifer recharge should be promoted by reducing surface water runoff.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 445

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 445

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 445

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 445

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 445

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06