565 resultados para WAVELET
Resumo:
In this paper, a hybrid intelligent approach is proposed for short-term electricity prices forecasting in a competitive market. The proposed approach is based on the wavelet transform and a hybrid of neural networks and fuzzy logic. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications. Conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Liver steatosis is a common disease usually associated with social and genetic factors. Early detection and quantification is important since it can evolve to cirrhosis. Steatosis is usually a diffuse liver disease, since it is globally affected. However, steatosis can also be focal affecting only some foci difficult to discriminate. In both cases, steatosis is detected by laboratorial analysis and visual inspection of ultrasound images of the hepatic parenchyma. Liver biopsy is the most accurate diagnostic method but its invasive nature suggest the use of other non-invasive methods, while visual inspection of the ultrasound images is subjective and prone to error. In this paper a new Computer Aided Diagnosis (CAD) system for steatosis classification and analysis is presented, where the Bayes Factor, obatined from objective intensity and textural features extracted from US images of the liver, is computed in a local or global basis. The main goal is to provide the physician with an application to make it faster and accurate the diagnosis and quantification of steatosis, namely in a screening approach. The results showed an overall accuracy of 93.54% with a sensibility of 95.83% and 85.71% for normal and steatosis class, respectively. The proposed CAD system seemed suitable as a graphical display for steatosis classification and comparison with some of the most recent works in the literature is also presented.
Resumo:
PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.
Resumo:
OBJECTIVE: To estimate the spatial intensity of urban violence events using wavelet-based methods and emergency room data. METHODS: Information on victims attended at the emergency room of a public hospital in the city of São Paulo, Southeastern Brazil, from January 1, 2002 to January 11, 2003 were obtained from hospital records. The spatial distribution of 3,540 events was recorded and a uniform random procedure was used to allocate records with incomplete addresses. Point processes and wavelet analysis technique were used to estimate the spatial intensity, defined as the expected number of events by unit area. RESULTS: Of all georeferenced points, 59% were accidents and 40% were assaults. There is a non-homogeneous spatial distribution of the events with high concentration in two districts and three large avenues in the southern area of the city of São Paulo. CONCLUSIONS: Hospital records combined with methodological tools to estimate intensity of events are useful to study urban violence. The wavelet analysis is useful in the computation of the expected number of events and their respective confidence bands for any sub-region and, consequently, in the specification of risk estimates that could be used in decision-making processes for public policies.
Resumo:
Stock market indices SMIs are important measures of financial and economical performance. Considerable research efforts during the last years demonstrated that these signals have a chaotic nature and require sophisticated mathematical tools for analyzing their characteristics. Classical methods, such as the Fourier transform, reveal considerable limitations in discriminating different periods of time. This paper studies the dynamics of SMI by combining the wavelet transform and the multidimensional scaling MDS . Six continuous wavelets are tested for analyzing the information content of the stock signals. In a first phase, the real Shannon wavelet is adopted for performing the evaluation of the SMI dynamics, while their comparison is visualized by means of the MDS. In a second phase, the other wavelets are also tested, and the corresponding MDS plots are analyzed.
Time-frequency and time-scale characterisation of the beat-by-beat high-resolution electrocardiogram
Resumo:
Proceedings of the Sixth Portuguese Conference on Bioemedical Engineering faro, Portugal
Resumo:
This paper provides a two-stage stochastic programming approach for the development of optimal offering strategies for wind power producers. Uncertainty is related to electricity market prices and wind power production. A hybrid intelligent approach, combining wavelet transform, particle swarm optimization and adaptive-network-based fuzzy inference system, is used in this paper to generate plausible scenarios. Also, risk aversion is explicitly modeled using the conditional value-at-risk methodology. Results from a realistic case study, based on a wind farm in Portugal, are provided and analyzed. Finally, conclusions are duly drawn.
Resumo:
Under the pseudoinverse control, robots with kinematical redundancy exhibit an undesirable chaotic joint motion which leads to an erratic behavior. This paper studies the complexity of fractional dynamics of the chaotic response. Fourier and wavelet analysis provides a deeper insight, helpful to know better the lack of repeatability problem of redundant manipulators. This perspective for the study of the chaotic phenomena will permit the development of superior trajectory control algorithms.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Proceedings of the International Conference on Computational Intelligence in Medicine Healthcare, CIMED 2005, Costa da Caparica, June 29 - July 1, 2005
Resumo:
Proceedings of the Information Technology Applications in Biomedicine, Ioannina - Epirus, Greece, October 26-28, 2006
Resumo:
In today’s healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time–frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient’s response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.
Resumo:
Ao longo dos últimos anos, acompanhada da evolução tecnológica, da dificuldade da inspeção visual e da consciencialização dos efeitos de uma má inspeção, verificou-se uma maior sensibilidade para a importância da monitorização estrutural, principalmente nas grandes infra-estruturas de engenharia civil. Os sistemas de monitorização estrutural permitem o acompanhamento contínuo do comportamento de uma determinada estrutura de tal forma que com os dados obtidos, é possível avaliar alterações no comportamento da mesma. Com isso, tem-se desenvolvido e implementado estratégias de identificação de danos estruturais com o intuito de aumentar a fiabilidade estrutural e evitar precocemente que alterações na condição da estrutura possam evoluir para situações mais severas. Neste contexto, a primeira parte desta dissertação consiste numa introdução à monitorização estrutural e à deteção de dano estrutural. Relativamente à monitorização, são expostos os seus objetivos e os princípios da sua aplicação. Conjuntamente são apresentados e descritos os principais sensores e são explicadas as funcionalidades de um sistema de aquisição de dados. O segundo tema aborda a importância da deteção de dano introduzindo os métodos estudados neste trabalho. Destaca-se o método das linhas de influência, o método da curvatura dos modos de vibração e o método da transformada de wavelet. Na segunda parte desta dissertação são apresentados dois casos de estudo. O primeiro estudo apresenta uma componente numérica e uma componente experimental. Estuda-se um modelo de viga que se encontra submetida a vários cenários de dano e valida-se a capacidade do método das linhas de influência em detetar e localizar essas anomalias. O segundo estudo consiste na modelação numérica de uma ponte real, na posterior simulação de cenários de dano e na análise comparativa da eficácia de cada um dos três métodos de deteção de dano na identificação e localização dos danos simulados. Por último, são apresentadas as principais conclusões deste trabalho e são sugeridos alguns tópicos a explorar na elaboração de trabalhos futuros.
Resumo:
In today’s healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time–frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient’s response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.