966 resultados para Vortex Dislocation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study of bleed and vortex generators in supersonic ow has been conducted. Methods were developed to analyze and directly compare the two systems' effects on turbulent boundary layers to better understand their potential to mitigate ow separation. LDA was used to measure two components of velocity in the boundary-layer for three cases|baseline, with bleed, or with a VG|at Mach numbers of 1.3, 1.5 and 1.8. The bleed system was comprised of a series of 2mm diameter normal holes operated at different suction rates, removing up to 10% of the incoming boundary layer. Three VG shapes were tested only at Mach 1.5 and 1.8. Measurements of the evolution of Hi and Cf downstream of each device indicate that Hi is not an appropriate parameter to gauge the effectiveness of vortex generators due to boundary layer wake distortion. The skin friction coeficient Cf may be a more appropriate measure. Similar increases in Cf were generated by VGs and bleed. The recovery to baseline conditions downstream of bleed was sensitive to Mach number, and more investigation of that effect will be required. Copyright © 2012 by University of Cambridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation has been undertaken in which vortex generators (VGs) have been employed to inhibit boundary-layer separation produced by the combined adversepressure- gradient of a terminal shock-wave and subsonic diffuser. This setup has been developed as part of a program to produce a more inlet relevant flow-field using a small-scale wind tunnel than previous studies. The resulting flow is dominated by large-scale separation, and as such, is thought to be a good test-bed for flow control. In this investigation, VGs have been added to determine their potential for shock-induced separation mitigation. In line with previous studies, it was observed that the application of VGs alone was not able to significantly alleviate separation overall, because enlarged corner separations was observed. Only when control of the corner separations using corner bleed was employed alongside centre-span control using VGs was a significant improvement in both wall pressure recovery (6% increase) and stagnation pressure recovery (2.4% increase) observed. Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leading edge vortices are considered to be important in generating the high lift coefficients observed in insect flight and may therefore be relevant to micro-air vehicles. A potential flow model of an impulsively started flat plate, featuring a leading edge vortex (LEV) and a trailing edge vortex (TEV) is fitted to experimental data in order to provide insight into the mechanisms that influence the convection of the LEV and to study how the LEV contributes to lift. The potential flow model fits the experimental data best with no bound circulation, which is in accordance with Kelvin's circulation theorem. The lift-to-drag ratio is well approximated by the function 'cot α' for α > 15°, which supports the tentative conclusion that shortly after an impulsive start, at post-stall angles of attack, lift is caused non-circulatory forces and by the action of the LEV as opposed to bound circulation. Copyright © 2012 by C. W. Pitt Ford.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flapping wings often feature a leading-edge vortex (LEV) that is thought to enhance the lift generated by the wing. Here the lift on a wing featuring a leading-edge vortex is considered by performing experiments on a translating flat-plate aerofoil that is accelerated from rest in a water towing tank at a fixed angle of attack of 15°. The unsteady flow is investigated with dye flow visualization, particle image velocimetry (PIV) and force measurements. Leading-and trailing-edge vortex circulation and position are calculated directly from the velocity vectors obtained using PIV. In order to determine the most appropriate value of bound circulation, a two-dimensional potential flow model is employed and flow fields are calculated for a range of values of bound circulation. In this way, the value of bound circulation is selected to give the best fit between the experimental velocity field and the potential flow field. Early in the trajectory, the value of bound circulation calculated using this potential flow method is in accordance with Kelvin's circulation theorem, but differs from the values predicted by Wagner's growth of bound circulation and the Kutta condition. Later the Kutta condition is established but the bound circulation remains small; most of the circulation is contained instead in the LEVs. The growth of wake circulation can be approximated by Wagner's circulation curve. Superimposing the non-circulatory lift, approximated from the potential flow model, and Wagner's lift curve gives a first-order approximation of the measured lift. Lift is generated by inertial effects and the slow buildup of circulation, which is contained in shed vortices rather than bound circulation. © 2013 Cambridge University Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous numerical simulations have shown that vortex breakdown starts with the formation of a steady axisymmetric bubble and that an unsteady spiralling mode then develops on top of this. We investigate this spiral mode with a linear global stability analysis around the steady bubble and its wake. We obtain the linear direct and adjoint global modes of the linearized Navier-Stokes equations and overlap these to obtain the structural sensitivity of the spiral mode, which identifies the wavemaker region. We also identify regions of absolute instability with a local stability analysis. At moderate swirls, we find that the m=-1 azimuthal mode is the most unstable and that the wavemaker regions of the m=-1 mode lie around the bubble, which is absolutely unstable. The mode is most sensitive to feedback involving the radial and azimuthal components of momentum in the region just upstream of the bubble. To a lesser extent, the mode is also sensitive to feedback involving the axial component of momentum in regions of high shear around the bubble. At an intermediate swirl, in which the bubble and wake have similar absolute growth rates, other researchers have found that the wavemaker of the nonlinear global mode lies in the wake. We agree with their analysis but find that the regions around the bubble are more influential than the wake in determining the growth rate and frequency of the linear global mode. The results from this paper provide the first steps towards passive control strategies for spiral vortex breakdown. © 2013 Cambridge University Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate whether vortex generators can be an effective form of passive flow control an experimental investigation has been conducted in a small-scale wind tunnel. With specific emphasis on supersonic inlet applications flow separation was initiated using a combined terminal shock wave and subsonic diffuser: a configuration that has been developed as a part of a program to produce a more inlet-relevant flowfield in a small-scale wind tunnel than previous studies. When flow control was initially introduced little overall flow improvement was obtained as the losses tended to be redistributed instead of removed. It became apparent that there existed a strong coupling between the center-span flow and the corner flows. As a consequence, only when flow control was applied to both the corner flows and center-span flow was a significant flow improvement obtained. When corner suction and center-span vortex generators were employed in tandem separation was much reduced and wall-pressure and stagnation pressure were notably improved. As a result, when applied appropriately, it is thought that vortex generators do have the potential to reduce the dependence on boundary-layer bleed for the purpose of separation suppression. Copyright © 2012 by Neil Titchener and Holger Babinsky. Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A small-strain two-dimensional discrete dislocation plasticity (DDP) framework is developed wherein dislocation motion is caused by climb-assisted glide. The climb motion of the dislocations is assumed to be governed by a drag-type relation similar to the glide-only motion of dislocations: such a relation is valid when vacancy kinetics is either diffusion limited or sink limited. The DDP framework is employed to predict the effect of dislocation climb on the uniaxial tensile and pure bending response of single crystals. Under uniaxial tensile loading conditions, the ability of dislocations to bypass obstacles by climb results in a reduced dislocation density over a wide range of specimen sizes in the climb-assisted glide case compared to when dislocation motion is only by glide. A consequence is that, at least in a single slip situation, size effects due to dislocation starvation are reduced. By contrast, under pure bending loading conditions, the dislocation density is unaffected by dislocation climb as geometrically necessary dislocations (GNDs) dominate. However, climb enables the dislocations to arrange themselves into lower energy configurations which significantly reduces the predicted bending size effect as well as the amount of reverse plasticity observed during unloading. The results indicate that the intrinsic plasticity material length scale associated with GNDs is strongly affected by thermally activated processes and will be a function of temperature. © 2013 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide experimental evidence for a vortex migration phenomenon in YBa2Cu3O7-δ (YBCO) thin film caused by travelling magnetic wave. The experiment is carried out on a 2 in. diameter YBCO thin film with a circular-type magnetic flux pump. We found that the travelling wave helps the vortices migrate into the centre of the sample: after the zero-field cooling process, the increase of the flux density in the centre is four times larger than the amplitude of the travelling wave. The reason for this massive vortex migration is probably due to the magnetic stress variation caused by the travelling wave: the magnetic stress increases locally in the crest region while decreases locally in the trough region, which could help the vortices to move locally. A comparison shows that the magnetization by standing wave can be easily predicted by Bean's model while travelling wave causes vortex migration generally much larger than the prediction of Bean's model. It is possible that travelling magnetic wave can be an effective way to magnetize a type II superconductor in considering this unusual vortex dynamics. © 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental comparison of several vortex generator geometries was conducted at Mach 1.5, 1.8, and 2.5 to better understand downstream vortex development as a function of device shape and Mach number. The devices had heights less than that of the boundary-layer ("micro"-vortex generators) and were either vane-shaped or of the alternative microramp geometry. LDV was used to measure two components of velocity at several stations downstream of the devices. The velocity data were then fitted to a vortex model so that vortex parameters such as circulation, core radius, and trajectory were estimated. Mach number dependence was seen for all parameters. Vortex height and core radius both tended to decrease slightly with increasing Mach number. A critical vane angle for maximum circulation was observed and also decreased with increasing Mach number. Circulation was seen to scale with wall-friction velocity for Mach 1.5 and 1.8 but not 2.5. © 2012 by W.R. Nolan and H. Babinsky.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode Division Multiplexing is performed over 2km and 8km of 50μm graded-index multimode fibre using (de)multiplex phase masks based around optical vortex modes to transmit 2×56Gbps QPSK signals without MIMO equalization. © 2013 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of VG configurations have been examined in a inlet relevant fiow-fleld which includes a terminal shock wave and subsequent subsonic diffuser. The flow-fleld was found to be highly sensitive to VG configuration. While the performance of one vane VG configuration was good over a wide range of streamwise positions, another quite similar vane configuration tended to perforin less well-especially when positioned further from the separation-and work is ongoing to determine the reasons behind tliis behavior. In addition, it was found that vane-type VG configurations were appreciably better at reducing separation than their micro-ramp counterparts. When combined with bleed in the centre-span region upstream of the VGs, the performance of vane type VGs was further enhanced and was the best of any configuration. © 2013 by Neil Titchener, Holger Babinsky and Eric Loth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An easy-to-interpret kinematic quantity measuring the average corotation of material line segments near a point is introduced and applied to vortex identification. At a given point, the vector of average corotation of line segments is defined as the average of the instantaneous local rigid-body rotation over "all planar cross sections" passing through the examined point. The vortex-identification method based on average corotation is a one-parameter, region-type local method sensitive to the axial stretching rate as well as to the inner configuration of the velocity gradient tensor. The method is derived from a well-defined interpretation of the local flow kinematics to determine the "plane of swirling" and is also applicable to compressible and variable-density flows. Practical application to direct numerical simulation datasets includes a hairpin vortex of boundary-layer transition, the reconnection process of two Burgers vortices, a flow around an inclined flat plate, and a flow around a revolving insect wing. The results agree well with some popular local methods and perform better in regions of strong shearing. Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.