999 resultados para Void


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports an experimental investigation of the vertical and horizontal permeabilities of speswhite kaolin clay. The permeabilities were measured using falling head permeability tests. A modification to a conventional oedometer was devised so that either vertical or horizontal permeabilities could be determined. It was found that the vertical and horizontal permeabilities of the clay slurry were similar, but that as the clay was consolidated one dimensionally the anisotropy of the clay fabric resulted in a greater horizontal permeability than the vertical permeability at any void ratio. Both permeabilities were uniquely related to the void ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructure and mechanical properties of sintered stainless steel powder, of composition AISI 420, have been measured. Ball-milled powder comprising nanoscale grains was sintered to bulk specimens by two alternative routes: hot-pressing and microlaser sintering. The laser-sintered alloy has a porosity of 6% and comprises a mixture of delta ferrite and tempered martensite, and the relative volume fraction varies along the axis of the specimen due to a thermal cycle that evolves with progressive deposition. In contrast, the hot-pressed alloy has a porosity of 0.7% and exhibits a martensitic lath structure with carbide particles at the boundaries of the prior austenite grains. These differences in microstructure lead to significant differences in mechanical properties. For example, the uniaxial tensile strength of the hot-pressed material is one-half of its compressive strength, due to void initiation at the carbide particles at the prior austenite grain boundaries. Nanoindentation measurements reveal a size effect in hardness and also reveal the sensitivity of hardness to the presence of mechanical polishing and electropolishing. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A one-dimensional analytical model is developed for the steady state, axisymmetric, slender flow of saturated powder in a rotating perforated cone. Both the powder and the fluid spin with the cone with negligible slip in the hoop direction. They migrate up the wall of the cone along a generator under centrifugal force, which also forces the fluid out of the cone through the powder layer and the porous wall. The flow thus evolves from an over-saturated paste at inlet into a nearly dry powder at outlet. The powder is treated as a Mohr-Coulomb granular solid of constant void fraction and permeability. The shear traction at the wall is assumed to be velocity and pressure dependent. The fluid is treated as Newtonian viscous. The model provides the position of the colour line (the transition from over- to under-saturation) and the flow velocity and thickness profiles over the cone. Surface tension effects are assumed negligible compared to the centrifugal acceleration. Two alternative conditions are considered for the flow structure at inlet: fully settled powder at inlet, and progressive settling of an initially homogeneous slurry. The position of the colour line is found to be similar for these two cases over a wide range of operating conditions. Dominant dimensionless groups are identified which control the position of the colour line in a continuous conical centrifuge. Experimental observations of centrifuges used in the sugar industry provide preliminary validation of the model. © 2011 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Golden monkey (Rhinopithecus roxellana), namely the snub-nosed monkey, is a well-known endangered primate, which distributes only in the central part of mainland China. As an effort to understand the current genetic status as well as population history of this species, we collected a sample of 32 individuals from four different regions, which cover the major habitat of this species. Forty-four allozyme loci were surveyed in our study by allozyme electrophoresis, none of which was found to be polymorphic. The void of polymorphism compared with that of other nonhuman primates is surprising particularly considering that the current population size is many times larger than that of some other endangered species. Since many independent loci are surveyed in this Study, the most plausible explanation for our observation is that the population has experienced a recent bottleneck. We used a coalescent approach to explore various scenarios of population bottleneck and concluded that the most recent bottleneck could have happened within the last 15,000 years. Moreover, the proposed simulation approach could be useful to researchers who need to analyze the non- or low-polymorphism data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A biomimetic reactor has been developed to synthesize hydroxyapatite- gelatin (HAP-GEL) nanocomposites that mimic ultra-structures of natural bone. We hypothesize that in the reactor, gelatin concentration controls morphology and packing structures of HAP crystals. To test the hypothesis, three types of mechanical tests were conducted, including nanoindentation, compression, and fracture tests. Nanoindentation tests in conjunction with computer modeling were used to assess effects on gelatin-induced microstructures of HAP. The results showed that increasing gelatin content increased both the plane strain modulus and the fracture toughness. The gelatin appeared to shorten the HAP crystal distance, which consolidated the internal structure of the composite and made the material more rigid. The fracture toughness KIC increased partially due to the effect of fiber bridging between gelatin molecules. The highest fracture toughness (1.12 MPa·1/2) was equivalent to that of pure hydroxyapatite. The compressive strength of the HAP-GEL (107.7±26.8 MPa) was, however, less sensitive to microstructural changes and was within the range of natural cortical bone (human 170 MPa, pig: 100 MPa). The compression strength was dominated by void inclusions while the nanoindentation response reflected ultra-structural arrangement of the crystals. The gelatin concentration is likely to modify crystal arrangement as demonstrated in TEM experiments but not void distribution at macroscopic levels. © 2006 Materials Research Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of long-lived transuranic (TRU) waste is a major disadvantage of fission-based nuclear power. Incineration, and virtual elimination, of waste stockpiles is possible in a thorium (Th) fuelled critical or subcritical fast reactor. Fuel cycles producing a net decrease in TRUs are possible in conventional pressurised water reactors (PWRs). However, minor actinides (MAs) have a detrimental effect on reactivity and stability, ultimately limiting the quality and quantity of waste that can be incinerated. In this paper, we propose using a thorium-retained-actinides fuel cycle in PWRs, where the reactor is fuelled with a mixture of thorium and TRU waste, and after discharge all actinides are reprocessed and returned to the reactor. To investigate the feasibility and performance of this fuel cycle an assembly-level analysis for a one-batch reloading strategy was completed over 125 years of operation using WIMS 9. This one-batch analysis was performed for simplicity, but allowed an indicative assessment of the performance of a four-batch fuel management strategy. The build-up of 233U in the reactor allowed continued reactive and stable operation, until all significant actinide populations had reached pseudo-equilibrium in the reactor. It was therefore possible to achieve near-complete transuranic waste incineration, even for fuels with significant MA content. The average incineration rate was initially around 330 kg per GW th year and tended towards 250 kg per GW th year over several decades: a performance comparable to that achieved in a fast reactor. Using multiple batch fuel management, competitive or improved end-of-cycle burn-up appears achievable. The void coefficient (VC), moderator temperature coefficient (MTC) and Doppler coefficient remained negative. The quantity of soluble boron required for a fixed fuel cycle length was comparable to that for enriched uranium fuel, and acceptable amounts can be added without causing a positive VC or MTC. This analysis is limited by the consideration of a single fuel assembly, and it will be necessary to perform a full core coupled neutronic-thermal-hydraulic analysis to determine if the design in its current form is feasible. In particular, the potential for positive VCs if the core is highly or locally voided is a cause for concern. However, these results provide a compelling case for further work on concept feasibility and fuel management, which is in progress. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of initial soil fabric and mode of shearing on quasi-steady state line in void ratiostress space are studied by employing the Distinct Element Method numerical analysis. The results show that the initial soil fabric and the mode of shearing have a profound effect on the location of the quasi-steady state line. The evolution of the soil fabric during the course of undrained shearing shows that the specimens with different initial soil fabrics reach quasi-steady state at various soil fabric conditions. At quasi-steady state, the soil fabric has a significant adjustment to change its behavior from contractive to dilative. As the stress state approaches the steady state, the soil fabrics of different initial conditions become similar. The numerical analysis results are compared qualitatively with the published experimental data and the effects of specimen reconstitution methods and mode of shearing found in the experimental studies canbe systematically explained by the numerical analysis. © 2009 Taylor & Francis Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of long-lived transuranic (TRU) waste is a major disadvantage of fission-based nuclear power. Previous work has indicated that TRU waste can be virtually eliminated in a pressurised water reactor (PWR) fuelled with a mixture of thorium and TRU waste, when all actinides are returned to the reactor after reprocessing. However, the optimal configuration for a fuel assembly operating this fuel cycle is likely to differ from the current configuration. In this paper, the differences in performance obtained in a reduced-moderation PWR operating this fuel cycle were investigated using WIMS. The chosen configuration allowed an increase of at least 20% in attainable burn-up for a given TRU enrichment. This will be especially important if the practical limit on TRU enrichment is low. The moderator reactivity coefficients limit the enrichment possible in the reactor, and this limit is particularly severe if a negative void coefficient is required for a fully voided core. Several strategies have been identified to mitigate this. Specifically, the control system should be designed to avoid a detrimental effect on moderator reactivity coefficients. The economic viability of this concept is likely to be dependent on the achievable thermal-hydraulic operating conditions. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas hydrate is a crystalline solid found within marine and subpermafrost sediments. While the presence of hydrates can have a profound effect on sediment properties, the stress-strain behavior of hydrate-bearing sediments is poorly understood due to inherent limitations in laboratory testing. In this study, we use numerical simulations to improve our understanding of the mechanical behavior of hydrate-bearing sands. The hydrate mass is simulated as either small randomly distributed bonded grains or as "ripened hydrate" forming patchy saturation, whereby sediment clusters with 100% pore-filled hydrate saturation are distributed within a hydrate-free sediment. Simulation results reveal that reduced sand porosity and higher hydrate saturation cause an increase in stiffness, strength, and dilative tendency, and the critical state line shifts toward higher void ratio and higher shear strength. In particular, the critical state friction angle increases in sands with patchy saturation, while the apparent cohesion is affected the most when the hydrate mass is distributed in pores. Sediments with patchy hydrate distribution exhibit a slightly lower strength than sediments with randomly distributed hydrate. Finally, hydrate dissociation under drained conditions leads to volume contraction and/or stress relaxation, and pronounced shear strains can develop if the hydrate-bearing sand is subjected to deviatoric loading during dissociation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deformations of sandy soils around geotechnical structures generally involve strains in the range small (0·01%) to medium (0·5%). In this strain range the soil exhibits non-linear stress-strain behaviour, which should be incorporated in any deformation analysis. In order to capture the possible variability in the non-linear behaviour of various sands, a database was constructed including the secant shear modulus degradation curves of 454 tests from the literature. By obtaining a unique S-shaped curve of shear modulus degradation, a modified hyperbolic relationship was fitted. The three curve-fitting parameters are: an elastic threshold strain γe, up to which the elastic shear modulus is effectively constant at G0; a reference strain γr, defined as the shear strain at which the secant modulus has reduced to 0·5G0; and a curvature parameter a, which controls the rate of modulus reduction. The two characteristic strains γe and γr were found to vary with sand type (i.e. uniformity coefficient), soil state (i.e. void ratio, relative density) and mean effective stress. The new empirical expression for shear modulus reduction G/G0 is shown to make predictions that are accurate within a factor of 1·13 for one standard deviation of random error, as determined from 3860 data points. The initial elastic shear modulus, G0, should always be measured if possible, but a new empirical relation is shown to provide estimates within a factor of 1·6 for one standard deviation of random error, as determined from 379 tests. The new expressions for non-linear deformation are easy to apply in practice, and should be useful in the analysis of geotechnical structures under static loading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we investigate a number of fuel assembly design options for a BWR core operating in a closed self-sustainable Th-233U fuel cycle. The designs rely on axially heterogeneous fuel assembly structure in order to improve fertile to fissile conversion ratio. One of the main assumptions of the current study was to restrict the fuel assembly geometry to a single axial fissile zone "sandwiched" between two fertile blanket zones. The main objective was to study the effect of the most important design parameters, such as dimensions of fissile and fertile zones and average void fraction, on the net breeding of 233U. The main design challenge in this respect is that the fuel breeding potential is at odds with axial power peaking and therefore limits the maximum achievable core power rating. The calculations were performed with BGCore system, which consists of MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly with reflective radial boundaries was modeled applying simplified restrictions on maximum central line fuel temperature and Critical Power Ratio. It was found that axially heterogeneous fuel assembly design with single fissile zone can potentially achieve net breeding. In this case however, the achievable core power density is roughly one third of the reference BWR core.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four fast reactor concepts using lead (LFR), liquid salt, NaCl-KCl-MgCl2 (LSFR), sodium (SFR), and supercritical CO2 (GFR) coolants are compared. Since economy of scale and power conversion system compactness are the same by virtue of the consistent 2400 MWt rating and use of the S-CO2 power conversion system, the achievable plant thermal efficiency, core power density and core specific powers become the dominant factors. The potential to achieve the highest efficiency among the four reactor concepts can be ranked from highest to lowest as follows: (1) GFR, (2) LFR and LSFR, and (3) SFR. Both the lead- and salt-cooled designs achieve about 30% higher power density than the gas-cooled reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor. Fuel cycle costs are favored for the sodium reactor by virtue of its high specific power of 65 kW/kgHM compared to the lead, salt and gas reactor values of 45, 35, and 21 kW/kgHM, respectively. In terms of safety, all concepts can be designed to accommodate the unprotected limiting accidents through passive means in a self-controllable manner. However, it does not seem to be a preferable option for the GFR where the active or semi-passive approach will likely result in a more economic and reliable plant. Lead coolant with its superior neutronic characteristics and the smallest coolant temperature reactivity coefficient is easiest to design for self-controllability, while the LSFR requires special reactivity devices to overcome its large positive coolant temperature coefficient. The GFR required a special core design using BeO diluent and a supercritical CO2 reflector to achieve negative coolant void worth-one of the conditions necessary for inherent shutdown following large LOCA. Protected accidents need to be given special attention in the LSFR and LFR due to the small margin to freezing of their coolants, and to a lesser extent in the SFR. © 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the effects of cooling time prior to reprocessing spent LWR fuel has on the reactor physics characteristics of a PWR fully loaded with homogeneously mixed U-Pu or U-TRU oxide (MOX) fuel is examined. A reactor physics analysis was completed using the CASM04e code. A void reactivity feedback coefficient analysis was also completed for an infinite lattice of fresh fuel assemblies. Some useful conclusions can be made regarding the effect that cooling time prior to reprocessing spent LWR fuel has on a closed homogeneous MOX fuel cycle. The computational analysis shows that it is more neutronically efficient to reprocess cooled spent fuel into homogeneous MOX fuel rods earlier rather than later as the fissile fuel content decreases with time. Also, the number of spent fuel rods needed to fabricate one MOX fuel rod increases as cooling time increases. In the case of TRU MOX fuel, with time, there is an economic tradeoff between fuel handling difficulty and higher throughput of fuel to be reprocessed. The void coefficient analysis shows that the void coefficient becomes progressively more restrictive on fuel Pu content with increasing spent fuel cooling time before reprocessing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analysis is presented of a database of 67 tests on 21 clays and silts of undrained shear stress-strain data of fine-grained soils. Normalizations of secant G in terms of initial mean effective stress p9 (i.e., G=p9 versus log g) or undrained shear strength cu (i.e., G=cu versus log g) are shown to be much less successful in reducing the scatter between different clays than the approach that uses the maximum shear modulus,Gmax, a technique still not universally adopted by geotechnical researchers and constitutive modelers. Analysis of semiempirical expressions forGmax is presented and a simple expression that uses only a void-ratio function and a confining-stress function is proposed. This is shown to be superior to a Hardin-style equation, and the void ratio function is demonstrated as an alternative to an overconsolidation ratio (OCR) function. To derive correlations that offer reliable estimates of secant stiffness at any required magnitude of working strain, secant shear modulus G is normalized with respect to its small-strain value Gmax, and shear strain g is normalized with respect to a reference strain gref at which this stiffness has halved. The data are corrected to two standard strain rates to reduce the discrepancy between data obtained from static and cyclic testing. The reference strain gref is approximated as a function of the plasticity index.Aunique normalized shear modulus reduction curve in the shape of a modified hyperbola is fitted to all the available data up to shear strains of the order of 1%. As a result, good estimates can be made of the modulus reduction G/Gmax ±30% across all strain levels in approximately 90% of the cases studied. New design charts are proposed to update the commonly used design curves. © 2013 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasible to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios, which is desirable to maximize the TRU burning rate. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage TRU burning cycle, where the first stage is Th-Pu MOX in a conventional PWR feeding a second stage continuous burn in RMPWR or RBWR, is technically reasonable, although it is more suitable for the RBWR implementation. In this case, the fuel cycle performance is relatively insensitive to the discharge burn-up of the first stage. © 2013 Elsevier Ltd. All rights reserved.