830 resultados para Vitamin B6
Resumo:
Introduction: Juvenile idiopathic arthritis (JIA) comprises a poorly understood group of chronic autoimmune diseases with variable clinical outcomes. We investigated whether the synovial fluid (SF) proteome could distinguish a subset of patients in whom disease extends to affect a large number of joints.
Methods: SF samples from 57 patients were obtained around time of initial diagnosis of JIA, labeled with Cy dyes and separated by two-dimensional electrophoresis. Multivariate analyses were used to isolate a panel of proteins which distinguish patient subgroups. Proteins were identified using MALDI-TOF mass spectrometry with expression verified by immunochemical methods. Protein glycosylation status was confirmed by hydrophilic interaction liquid chromatography.
Results: A truncated isoform of vitamin D binding protein (VDBP) is present at significantly reduced levels in the SF of oligoarticular patients at risk of disease extension, relative to other subgroups (p < 0.05). Furthermore, sialylated forms of immunopurified synovial VDBP were significantly reduced in extended oligoarticular patients (p < 0.005).
Conclusion: Reduced conversion of VDBP to a macrophage activation factor may be used to stratify patients to determine risk of disease extension in JIA patients.
Resumo:
This cross-sectional study assessed relationships between plasma homocysteine, 'thermolabile' methylenetetrahydrofolatereductase (MTHFR) genotype, B vitamin status and measures of renal function in elderly (70-89 years) and nonagenarian (90+ years) subjects, with the hypothesis that octo/nonagenarian subjects who remain healthy into old age as defined by 'Senieur' status might show reduced genetic or environmental risk factors usually associated with hyperhomocysteinaemia. Plasma homocysteine was 9.1 micromol/l (geometric mean [GM]) for all elderly subjects. Intriguingly, homocysteine was significantly lower in 90+ (GM; 8.2 micromol/l) compared to 70-89-year-old subjects (GM; 9.8 micromol/l) despite significantly lower glomerular filtration rate (GFR) and serum B12 in nonagenarian subjects and comparable MTHFR thermolabile (TT) genotype frequency, folate and B6 status to 70-89-year-olds. For all elderly subjects, the odds ratio and 95% confidence intervals for plasma homocysteine being in the highest versus lowest quartile was 4.27 (2.04-8.92) for age 90 years, 3.4 (1.5-7.8) for serum folate 10.7nmol/l, 3.0 (0.9-10.2) for creatinine >140 compared
Resumo:
Introduction: An association between depression and folate has been found in clinical studies. Depression and dementia can contribute to nutritional deficiency. This study clinical depression in in octo/nonagenarians from the BELFAST study.
Method: In the BELFAST study, 38 free-living octo/nonagenarians (mean age 82 years), who apparently well and cognitively intact were followed up at 5 years and assessed using the Geriatric Depression Scale (GDS), Folstein (30 point), Mini Nutritional Assessment Tool (MNA) together with serum folate and vitamin B12 levels.
Results: Mean GDS was 3.4 (SD 2.5), serum folate 7.1 umol/l (SD 5.3) and B12 553 umol/l (458). With mean MNA and Folstein -25.8 (SD 2.7) and 27.6 (SD 2.7) respectively with no sex difference (p = 0.78; p = 0.36). 25% of subjects showed a GDS >5 indicating risk of mild depression and 21% had compromised nutritional status. MNA associated with GDS in male (r2 = 0.56 p = 0.01), but not in female elderly subjects (r2 = 0.01; p = 0.44). GDS score and lower serum folate were associated (r2 = -0.23; p = 0.01).
Conclusion: Overall there was the suggestion that nutritional status and depression might be linked in male subjects at 5 year follow-up in octo/nonagenarians from the BEFLAST study. The lower folate in subjects categorised at risk of mild depression might suggest vitamin supplementation could be useful.
Resumo:
Objective: The first aim of this study was to assess 25-hydroxy vitamin D (25OHD) concentrations in women with type 1 diabetes (T1DM) during pregnancy, post-delivery and also foetal (cord blood) 25OHD concentrations and to examine relationships between these. The second aim of the study was to investigate potential interactions between maternal body mass index (BMI) and foetal vitamin D status. A further study aim was to examine potential relationships between maternal 25OHD and glycosylated haemoglobin (HbA1c) throughout pregnancy.
Research Design and Methods: This was an observational study of 52 pregnant controls without diabetes and 65 pregnant women with T1DM in a university teaching hospital. Maternal serum 25OHD was measured serially throughout the pregnancy and post-delivery. Cord blood 25OHD was measured at delivery. 25OHD was measured by liquid chromatography tandem mass spectrometry (LC-MS/MS).
Results: Vitamin D deficiency (25OHD <25 nmol/L) was apparent in both the T1DM subjects and controls at all 3 pregnancy trimesters. Vitamin D levels in all cord blood were <50 nmol/L. Maternal 25OHD correlated positively with cord 25OHD at all 3 trimesters in the T1DM group (p= 0.02; p<0.001; p<0.001). 25OHD levels within cord blood were significantly lower for women with diabetes classified as obese vs. normal weight at booking [normal weight BMI <25 kg/m2 vs. obese BMI >30 kg/m2 (nmol/L±SD); 19.93±11.15 vs. 13.73±4.74, p= 0.026]. In the T1DM group, HbA1c at booking was significantly negatively correlated with maternal 25OHD at all 3 trimesters (p= 0.004; p = 0.001; p= 0.05).
Conclusion: In T1DM pregnancy, low vitamin D levels persist throughout gestation and post-delivery. Cord blood vitamin D levels correlate with those of the mother, and are significantly lower in obese women than in their normal weight counterparts. Maternal vitamin D levels exhibit a significant negative relationship with HbA1c levels, supporting a potential role for this vitamin in maintaining glycaemic control.
Resumo:
Purpose: Polymorphisms in the vitamin D receptor (VDR) gene may be of etiological importance in determining cancer risk. The aim of this study was to assess the association between common VDR gene polymorphisms and esophageal adenocarcinoma (EAC) risk in an all-Ireland population-based case-control study. Methods: EAC cases and frequency-matched controls by age and gender recruited between March 2002 and December 2004 throughout Ireland were included. Participants were interviewed, and a blood sample collected for DNA extraction. Twenty-seven single nucleotide polymorphisms in the VDR gene were genotyped using Sequenom or TaqMan assays while the poly(A) microsatellite was genotyped by fluorescent fragment analysis. Unconditional logistic regression was applied to assess the association between VDR polymorphisms and EAC risk. Results: A total of 224 cases of EAC and 256 controls were involved in analyses. After adjustment for potential confounders, TT homozygotes at rs2238139 and rs2107301 had significantly reduced risks of EAC compared with CC homozygotes. In contrast, SS alleles of the poly(A) microsatellite had significantly elevated risks of EAC compared with SL/LL alleles. However, following permutation analyses to adjust for multiple comparisons, no significant associations were observed between any VDR gene polymorphism and EAC risk. Conclusions: VDR gene polymorphisms were not significantly associated with EAC development in this Irish population. Confirmation is required from larger studies. © Springer Science+Business Media, LLC 2011.
Resumo:
Objective: To investigate the association between serum 25-hydroxyvitamin D concentrations (25(OH)D) and mortality in a large consortium of cohort studies paying particular attention to potential age, sex, season, and country differences.
Design: Meta-analysis of individual participant data of eight prospective cohort studies from Europe and the US.
Setting: General population.
Participants: 26 018 men and women aged 50-79 years
Main outcome measures: All-cause, cardiovascular, and cancer mortality.
Results: 25(OH)D concentrations varied strongly by season (higher in summer), country (higher in US and northern Europe) and sex (higher in men), but no consistent trend with age was observed. During follow-up, 6695 study participants died, among whom 2624 died of cardiovascular diseases and 2227 died of cancer. For each cohort and analysis, 25(OH)D quintiles were defined with cohort and subgroup specific cut-off values. Comparing bottom versus top quintiles resulted in a pooled risk ratio of 1.57 (95% CI 1.36 to 1.81) for all-cause mortality. Risk ratios for cardiovascular mortality were similar in magnitude to that for all-cause mortality in subjects both with and without a history of cardiovascular disease at baseline. With respect to cancer mortality, an association was only observed among subjects with a history of cancer (risk ratio, 1.70 (1.00 to 2.88)). Analyses using all quintiles suggest curvilinear, inverse, dose-response curves for the aforementioned relationships. No strong age, sex, season, or country specific differences were detected. Heterogeneity was low in most meta-analyses.
Conclusions: Despite levels of 25(OH)D strongly varying with country, sex, and season, the association between 25(OH)D level and all-cause and cause-specific mortality was remarkably consistent. Results from a long term randomised controlled trial addressing longevity are being awaited before vitamin D supplementation can be recommended in most individuals with low 25(OH)D levels.
Resumo:
Background: Chronic kidney disease (CKD) patients on dialysis are prone to vitamin D insufficiency despite oral vitamin D supplementation. Here, we studied whether narrow-band ultraviolet B (NB-UVB) exposures improve vitamin D balance.
Methods: 14 haemodialysis patients and 15 healthy subjects receiving oral cholecalciferol 20 µg daily got nine NB-UVB exposures on the entire body. Serum 25-hydroxyvitamin D (25(OH)D) was measured by radioimmunoassay. Cutaneous mRNA expression levels of CYP27A1 and CYP27B1, two enzymes required for hydroxylation of vitamin D into its active metabolite, were also measured.
Results: The baseline serum 25(OH)D concentration was 57.6 ± 18.2 nmol/l in the CKD patients and 74.3 ± 14.8 nmol/l in the healthy subjects. The NB-UVB course increased serum 25(OH)D by 14.0 nmol/l (95% CI 8.7-19.5) and 17.0 nmol/l (CI 13.7-20.2), respectively. At baseline the CKD patients showed significantly increased CYP27B1 levels compared to the healthy subjects.
Conclusions: A short NB-UVB course is an efficient way to improve vitamin D balance in CKD patients on dialysis who are receiving oral vitamin D supplementation. The increased cutaneous CYP27B1 levels in the CKD patients suggest that the loss of renal activity of this enzyme is at least partially compensated for by the skin.
Resumo:
A course of treatment with narrow-band ultraviolet B (NB-UVB) improves psoriasis and increases serum 25-hydroxyvitamin D (25(OH)D). In this study 12 patients with psoriasis who were supplemented with oral cholecalciferol, 20 µg daily, were given a course of NB-UVB and their response measured. At baseline, serum 25(OH)D was 74.14 ± 22.9 nmol/l. At the 9th exposure to NB-UVB 25(OH)D had increased by 13.2 nmol/l (95% confidence interval (95% CI) 7.2–18.4) and at the 18th exposure by 49.4 nmol/l (95% CI 35.9–64.6) above baseline. Psoriasis Area Severity Index score improved from 8.7 ± 3.5 to 4.5 ± 2.0 (p < 0.001). At baseline, psoriasis lesions showed low vitamin D metabolizing enzyme (CYP27A1, CYP27B1) and high human β-defensin-2 mRNA expression levels compared with those of the healthy subjects. In conclusion, NB-UVB treatment significantly increases serum 25(OH)D in patients with psoriasis who are taking oral vitamin D supplementation, and the concentrations remain far from the toxicity level. Healing psoriasis lesions show similar mRNA expression of vitamin D metabolizing enzymes, but higher antimicrobial peptide levels than NB-UVB-treated skin in healthy subjects.
Resumo:
Chronic kidney disease (CKD) patients are especially prone to vitamin D insufficiency. Narrow-band ultraviolet B (NB-UVB) treatment increases serum 25-hydroxyvitamin D [25(OH)D] in dermatological patients, and we studied whether it also improves vitamin D balance in CKD patients on haemodialysis.
Resumo:
Antimicrobial peptides (AMPs) are effectors of cutaneous innate immunity and protect primarily against microbial infections. An array of AMPs can be found in and on the skin. Those include peptides that were first discovered for their antimicrobial properties but also proteins with antimicrobial activity first characterized for their activity as chemokines, enzymes, enzyme inhibitors and neuropeptides. Cathelicidins were among the first families of AMPs discovered in skin. They are now known to exert a dual role in innate immune defense: they have direct antimicrobial activity and will also initiate a host cellular response resulting in cytokine release, inflammation and angiogenesis. Altered cathelicidin expression and function was observed in several common inflammatory skin diseases such as atopic dermatitis, rosacea and psoriasis. Until recently the molecular mechanisms underlying cathelicidin regulation were not known. Lately, vitamin D3 was identified as the major regulator of cathelicidin expression and entered the spotlight as an immune modulator with impact on both, innate and adaptive immunity. Therapies targeting vitamin D3 signalling may provide novel approaches for the treatment of infectious and inflammatory skin diseases by affecting both innate and adaptive immune functions through AMP regulation.
Resumo:
Constant exposure to a wide variety of microbial pathogens represents a major challenge for our skin. Antimicrobial peptides (AMPs) are mediators of cutaneous innate immunity and protect primarily against microbial infections. Cathelicidins were among the first AMPs identified in human skin and recent evidence suggests that they exert a dual role in innate immune defense: At first, due to their antimicrobial activity they kill pathogens directly. In addition, these peptides initiate a potent host response to infection resulting in cytokine release, inflammation and a cellular response. Disturbed cathelicidin expression and function was observed in several common inflammatory skin diseases, such as psoriasis where cathelicidin peptide converts inert self-DNA and self-RNA into an autoimmune stimulus. In atopic dermatitis decreased levels of cathelicidin facilitating microbial superinfections have been discussed. Furthermore, abnormally processed cathelicidin peptides induce inflammation and a vascular response in rosacea. Until recently, the molecular mechanisms underlying cathelicidin regulation were unknown. Recently, the vitamin D3 pathway was identified as the major regulator of cathelicidin expression. Consequently, vitamin D3 entered the spotlight as an immune modulator with impact on both innate and adaptive immunity. Therapies targeting vitamin D3 signaling may provide new approaches for infectious and inflammatory skin diseases by affecting both innate and adaptive immune functions.