965 resultados para Visual Field


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The superficial gray layer of the superior colliculus contains a map that represents the visual field, whereas the underlying intermediate gray layer contains a vector map of the saccades that shift the direction of gaze. These two maps are aligned so that a particular region of the visual field is represented directly above the neurons that orient the highest acuity area of the retina toward that region. Although it has been proposed that the transmission of information from the visuosensory to the motor map plays an important role in the generation of visually guided saccades, experiments have failed to demonstrate any functional linkage between the two layers. We examined synaptic transmission between these layers in vitro by stimulating the superficial layer while using whole-cell patch-clamp methods to measure the responses of intermediate layer neurons. Stimulation of superficial layer neurons evoked excitatory postsynaptic currents in premotor cells. This synaptic input was columnar in organization, indicating that the connections between the layers link corresponding regions of the visuosensory and motor maps. Excitatory postsynaptic currents were large enough to evoke action potentials and often occurred in clusters similar in duration to the bursts of action potentials that premotor cells use to command saccades. Our results indicate the presence of functional connections between the superficial and intermediate layers and show that such connections could play a significant role in the generation of visually guided saccades.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many prefrontal (PF) neurons convey information about both an object’s identity (what) and its location (where). To explore how they represent conjunctions of what and where, we explored the receptive fields of their mnemonic activity (i.e., their “memory fields”) by requiring monkeys to remember both an object and its location at many positions throughout a wide portion of central vision. Many PF neurons conveyed object information and had highly localized memory fields that emphasized the contralateral, but not necessarily foveal, visual field. These results indicate that PF neurons can simultaneously convey precise location and object information and thus may play a role in constructing a unified representation of a visual scene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To understand how the human visual system analyzes images, it is essential to know the structure of the visual environment. In particular, natural images display consistent statistical properties that distinguish them from random luminance distributions. We have studied the geometric regularities of oriented elements (edges or line segments) present in an ensemble of visual scenes, asking how much information the presence of a segment in a particular location of the visual scene carries about the presence of a second segment at different relative positions and orientations. We observed strong long-range correlations in the distribution of oriented segments that extend over the whole visual field. We further show that a very simple geometric rule, cocircularity, predicts the arrangement of segments in natural scenes, and that different geometrical arrangements show relevant differences in their scaling properties. Our results show similarities to geometric features of previous physiological and psychophysical studies. We discuss the implications of these findings for theories of early vision.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Research has demonstrated that human infants and nonhuman primates have a rudimentary numerical system that enables them to count objects or events. More recently, however, studies using a preferential looking paradigm have suggested that preverbal human infants are capable of simple arithmetical operations, such as adding and subtracting a small number of visually presented objects. These findings implicate a relatively sophisticated representational system in the absence of language. To explore the evolutionary origins of this capacity, we present data from an experiment with wild rhesus monkeys (Macaca mulatta) that methodologically mirrors those conducted on human infants. Results suggest that rhesus monkeys detect additive and subtractive changes in the number of objects present in their visual field. Given the methodological and empirical similarities, it appears that nonhuman primates such as rhesus monkeys may also have access to arithmetical representations, although alternative explanations must be considered for both primate species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Usher syndrome is a group of diseases with autosomal recessive inheritance, congenital hearing loss, and the development of retinitis pigmentosa, a progressive retinal degeneration characterized by night blindness and visual field loss over several decades. The causes of Usher syndrome are unknown and no animal models have been available for study. Four human gene sites have been reported, suggesting at least four separate forms of Usher syndrome. We report a mouse model of type I Usher syndrome, rd5, whose linkage on mouse chromosome 7 to Hbb and tub has homology to human Usher I reported on human chromosome 11p15. The electroretinogram in homozygous rd5/rd5 mouse is never normal with reduced amplitudes that extinguish by 6 months. Auditory-evoked response testing demonstrates increased hearing thresholds more than control at 3 weeks of about 30 decibels (dB) that worsen to about 45 dB by 6 months.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The visual stimuli that elicit neural activity differ for different retinal ganglion cells and these cells have been categorized by the visual information that they transmit. If specific visual information is conveyed exclusively or primarily by a particular set of ganglion cells, one might expect the cells to be organized spatially so that their sampling of information from the visual field is complete but not redundant. In other words, the laterally spreading dendrites of the ganglion cells should completely cover the retinal plane without gaps or significant overlap. The first evidence for this sort of arrangement, which has been called a tiling or tessellation, was for the two types of "alpha" ganglion cells in cat retina. Other reports of tiling by ganglion cells have been made subsequently. We have found evidence of a particularly rigorous tiling for the four types of ganglion cells in rabbit retina that convey information about the direction of retinal image motion (the ON-OFF direction-selective cells). Although individual cells in the four groups are morphologically indistinguishable, they are organized as four overlaid tilings, each tiling consisting of like-type cells that respond preferentially to a particular direction of retinal image motion. These observations lend support to the hypothesis that tiling is a general feature of the organization of information outflow from the retina and clearly implicate mechanisms for recognition of like-type cells and establishment of mutually acceptable territories during retinal development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Optic neuritis is an inflammation of the optic nerve and may be related to different systemic conditions. The clinical presentation of this pathology usually includes sudden loss of visual acuity (VA) which may be unilateral or bilateral, visual field restriction, pain with eye movements, dyschromatopsia, a relative afferent pupillary defect and optic disk swelling. Optic neuritis in children has specific clinical features and a better prognosis than in adulthood. Although usually appears an underlying viral disease, the main concern for practitioners is the relationship of optic neuritis with multiple sclerosis. In addition to the classical techniques as magnetic resonance imaging (MRI), current tendencies of diagnosis for eye practitioners include new imaging devices as optical coherence tomography (OCT), useful to show a thinning of the retinal fibers layer (RFL) after the inflammatory episode. Regarding the management of these patients, short-term intravenous steroid dosages seem to be the best option to treat acute attacks characterized by a very poor bilateral VA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hemianopic reading impairment is a consequence of a visual field defect to either the right or the left side and is characterized by an increased reading time and reduced reading performance. Depending on the side of the visual field defect, reading will be affected differently: Patients suffering from a visual field defect to the right side have noticeable difficulties in reading fluently with slowing. Patients suffering from a visual field defect to the left usually struggle to find the beginning of a line and read more fluently. It was suggested in the literature that changing the reading direction from horizontal to vertical may be a training strategy to reduce reading problems in patients with hemianopia. The aim of the study was to investigate the influence of reading direction on reading speed in patients with left- or right-sided visual field defects and in healthy controls. METHOD In 13 patients with hemianopia and in 13 age-matched controls, reading speed was calculated for texts in standard as well as in clockwise rotated orientation of 90, 180, and 270°. RESULTS In both groups, text rotation reduced reading speed compared to standard reading. Patients with left-sided hemianopia had the greatest reduction after text rotation. Patients with right-sided hemianopia had the smallest speed reduction in 90° vertically rotated texts. CONCLUSIONS Text rotation has different effects in left- or right-sided hemianopia patients. For patients with left-sided heminanopia, rotation of the text may not be a helpful training strategy, for right-sided hemianopia vertical rotation of the text of 90° may be a beneficial training strategy to reduce reading deficits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

NADPH diaphorase (NADPHd) histochemistry labels two types of nitrergic amacrine cells in the rabbit retina. Both the large ND1 cells and the small ND2 cells stratify in the middle of the inner plexiform layer, and their overlapping processes produce a dense plexus, which makes it difficult to trace the morphology of single cells. The complete morphology of the ND1 amacrine cells has been revealed by injecting Neurobiotin into large round somata in the inner nuclear layer, which resulted in the labelling of amacrine cells whose proximal morphology and stratification matched those of the ND1 cells stained by NADPHd histochemistry. The Neurobiotin-injected ND1 cells showed strong homologous tracer coupling to surrounding ND1 cells, and double-labelling experiments confirmed that these coupled cells showed NADPHd reactivity. The ND1 amacrine cells branch in stratum 3 of the inner plexiform layer, where they produce a sparsely branched dendritic tree of 400-600 mum diameter in ventral peripheral retina. In addition, each cell gives rise to several fine beaded processes, which arise either from a side branch of the dendritic tree or from the tapering of a distal dendrite. These axon-like processes branch successively within the vicinity of the dendritic field before extending, with little or no further branching, for 3-5 mm from the soma in ventral peripheral retina. Consequently, these cells may span one-third of the visual field of each eye, and their spatial extent appears to be greater than that of most other types of axon-bearing amacrine cells injected with Neurobiotin in this study. The morphology and tracer-coupling pattern of the ND1 cells are compared with those of confirmed type 1 catecholaminergic cells, a presumptive type 2 catecholaminergic cell, the type 1 polyaxonal. cells, the long-range amacrine cells, a novel type of axon-bearing cell that also branches in stratum 3, and a type of displaced amacrine cell that may correspond to the type 2 polyaxonal cell. (C) 2004 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biological underpinnings of human intelligence remain enigmatic. There remains the greatest confusion and controversy regarding mechanisms that enable humans to conceptualize, plan, and prioritize, and why they are set apart from other animals in their cognitive abilities. Here we demonstrate that the basic neuronal building block of the cerebral cortex, the pyramidal cell, is characterized by marked differences in structure among primate species. Moreover, comparison of the complexity of neuron structure with the size of the cortical area/region in which the cells are located revealed that trends in the granular prefrontal cortex (gPFC) were dramatically different to those in visual cortex. More specifically, pyramidal cells in the gPFC of humans had a disproportionately high number of spines. As neuron structure determines both its biophysical properties and connectivity, differences in the complexity in dendritic structure observed here endow neurons with different computational abilities. Furthermore, cortical circuits composed of neurons with distinguishable morphologies will likely be characterized by different functional capabilities. We propose that 1. circuitry in V1, V2, and gPFC within any given species differs in its functional capabilities and 2. there are dramatic differences in the functional capabilities of gPFC circuitry in different species, which are central to the different cognitive styles of primates. In particular, the highly branched, spinous neurons in the human gPFC may be a key component of human intelligence. (C) 2005 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dislexia é uma condição neurológica associada a deficiências na aquisição e processamento da linguagem. Variando em graus de gravidade, que se manifesta por dificuldades na linguagem receptiva e expressiva, incluindo processamento fonológico, na leitura, escrita, ortografia, caligrafia, e por vezes em aritmética. Dislexia é uma condição hereditária associada a diversas anormalidades neurológicas em áreas corticais visuais e auditivas. Uma das mais influentes teorias para explicar os sintomas disléxicos é a chamada hipótese magnocelular. Segundo esta hipótese, a dislexia resulta de processamento de informações visuais anormais, devido principalmente a disfunção no sistema magnocelular. Esta dissertação explora esta hipótese comparando quinze indivíduos com dislexia e quinze controles, com idades compreendidas entre os 18 e os 30 anos através de dois testes visuais de atenção. Ambos os experimentos avaliam tempo de reação a estímulos que apareciam em toda tela do computador, enquanto os indivíduos permaneciam instalados, com a cabeça apoiada por um chin rest e com os olhos fixos em um alvo central. O experimento I consistiu de estímulos (pequenos círculos) brancos apresentados em um fundo preto. No experimento II, a mesma metodologia foi utilizada, mas agora com os estímulos (pequenos círculos) verdes sobre um fundo vermelho. Os resultados foram analisados levando em consideração os quadrantes onde os estímulos foram apresentados. Pacientes e controles não diferiram em relação ao tempo de reação a estímulos apresentados no campo visual inferior, em comparação ao quadrante superior de um mesmo indivíduo. Considerando todos os quadrantes, disléxicos tiveram tempo de reação mais lento no experimento I, mas apresentaram tempos de reação semelhantes aos controles no experimento II. Estes resultados são compatíveis com anormalidades no sistema magnocelular. As implicações destes achados para a fisiopatologia da dislexia, bem como para o seu tratamento devem ser mais discutidos.(AU)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The MacDQoL is an individualised measure of the impact of macular degeneration (MD) on quality of life (QoL). There is preliminary evidence of its psychometric properties and sensitivity to severity of MD. The aim of this study was to carry out further psychometric evaluation with a larger sample and investigate the measure's sensitivity to MD severity. Methods: Patients with MD (n = 156: 99 women, 57 men, mean age 79 ± 13 years), recruited from eye clinics (one NHS, one private) completed the MacDQoL by telephone interview and later underwent a clinic vision assessment including near and distance visual acuity (VA), comfortable near VA, contrast sensitivity, colour recognition, recovery from glare and presence or absence of distortion or scotoma in the central 10° of the visual field. Results: The completion rate for the MacDQoL items was 99.8%. Of the 26 items, three were dropped from the measure due to redundancy. A fourth was retained in the questionnaire but excluded when computing the scale score. Principal components analysis and Cronbach's alpha (0.944) supported combining the remaining 22 items in a single scale. Lower MacDQoL scores, indicating more negative impact of MD on QoL, were associated with poorer distance VA (better eye r = -0.431 p < 0.001; worse eye r = -0.350 p < 0.001; binocular vision r = -0.419 p < 0.001) and near VA (better eye r -0.326 p < 0.001; worse eye r = -0.226 p < 0.001; binocular vision r = -0.326 p < 0.001). Poorer MacDQoL scores were associated with poorer contrast sensitivity (better eye r = 0.392 p < 0.001; binocular vision r = 0.423 p < 0.001), poorer colour recognition (r = 0.417 p < 0.001) and poorer comfortable near VA (r = -0.283, p < 0.001). The MacDQoL differentiated between those with and without binocular scotoma (U = 1244 p < 0.001). Conclusion: The MacDQoL 22-item scale has excellent internal consistency reliability and a single-factor structure. The measure is acceptable to respondents and the generic QoL item, MD-specific QoL item and average weighted impact score are related to several measures of vision. The MacDQoL demonstrates that MD has considerable negative impact on many aspects of QoL, particularly independence, leisure activities, dealing with personal affairs and mobility. The measure may be valuable for use in clinical trials and routine clinical care. © 2005 Mitchell et al; licensee BioMed Central Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This review describes a group of diseases known as the transmissible spongiform encephalopathies (TSEs), which affect animals and humans. Examination of affected brain tissue suggests that these diseases are caused by the acquisition and deposition of prion protein (PrP). Creutzfeldt-Jakob disease (CJD) is the most important form of TSE in humans with at least four different varieties of the disease. Variant CJD (vCJD), a new form of the disease found in the UK, has several features that differ from the classical forms including early age of onset, longer duration of disease, psychiatric presentation (for example, depression) and extensive florid plaque development in the brain. About 10 per cent of patients with CJD exhibit visual symptoms at disease presentation and approximately 50 per cent during the course of the disease. The most commonly reported visual symptoms include diplopia, supranuclear palsies, complex visual disturbances, homonymous visual field defects, hallucinations and cortical blindness. Saccadic and smooth pursuit movements appear to be more rarely affected. The agent causing vCJD accumulates in lymphoid tissue such as the spleen and tonsils. The cornea has lymphoid tissue in the form of corneal dendritic cells that are important in the regulation of the immune response in the anterior segment of the eye. The presence of these cells in the cornea has raised the possibility of transmission between patients via optical devices that contact the eye. Although such transmission is theoretically possible it remains highly improbable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Consumers' tendency to choose the option in the center of an array and the process underlying this effect is explored. Findings from two eye-tracking studies suggest that brands in the horizontal center receive more visual attention. They are more likely to be chosen. Investigation of the attention process revealed an initial central fixation bias, a tendency to look first at the central option, and a central gaze cascade effect, progressively increasing attention focused on the central option right prior to decision. Only the central gaze cascade effect was related to choice. An offline study with tangible products demonstrated that the centrally located item within a product category is chosen more often, even when it is not placed in the center of the visual field. Despite widespread use, memory-based attention measures were not correlated with eye-tracking measures. They did not capture visual attention and were not related to choice. © 2012 by JOURNAL OF CONSUMER RESEARCH, Inc.