943 resultados para Vinyl acetate
Resumo:
Blends of crystallizable poly(vinyl alcohol) (PVA) with poly(N-vinyl-2-pyrrolidone) (PVPy) were studied by C-13 cross-polarization/magic angle spinning (CP/MAS) n.m.r. and d.s.c. The C-13 CP/MAS spectra show that the blends were miscible on a molecular level over the whole composition range studied, and that the intramolecular hydrogen bonds of PVA were broken and intermolecular hydrogen bonds between PVA and PVPy formed when the two polymers were mixed. The results of a spin-lattice relaxation study indicate that blending of the two polymers reduced the average intermolecular distance and molecular motion of each component, even in the miscible amorphous phase, and that addition of PVPy into PVA has a definite effect on the crystallinity of PVA in the blends over the whole composition range, yet there is still detectable crystallinity even when the PVPy content is as high as 80 wt%. These results are consistent with those obtained from d.s.c. studies.
Resumo:
The substituent chemical shift (SCS) has been applied to the assignment of the C-13 NMR spectrum of chlorinated polyethylene (CPE). CPE of different chlorine contents has been employed and their sequence structure discussed. The results show that characteristic of CPE with medium chlorine content is the dichloroethane structure in molecular chain. SCS parameters have been obtained from the C-13 NMR spectra. It was found that the effects of chlorine content and temperature on SCS are negligible, but the substituent parameter S1 reduced by 0.39 ppm when C2Cl4 was added to solvent ODCB.
Resumo:
Blends of poly(N-vinyl-2-pyrrolidone) (PVP) with poly(ether sulphone) and two phenolphthalein-based polymers, viz. phenolphthalein poly(ether ether sulphone) and phenolphthalein poly(ether ether ketone) were prepared by casting from a common solvent and studied by differential scanning calorimetry. It was found that all the PVP blends are miscible and show a single, composition-dependent glass transition temperature (T(g)). The T(g)-composition dependence has been analysed by the use of the Gordon-Taylor equation. The values of the k parameter in the Gordon-Taylor equation obtained are all not high for the three pairs, in accordance with the fact that there is no strongly specific interaction between PVP and any of the other polymers.
Resumo:
The graft polymerization of acrylic acid(AA) on poly(vinyl alcohol) (PVAL) has been investigated by using either potassium persulfate (KPS) or ceric ammonium nitrate(CAN) as an initiator. In the case of KPS initiation, the formation of the graft polymer always lags behind the homopolymer formation. The graft polymer is separated by acetone, and the increase of reaction temperature favors the homopolymer formation at the early stage. In the case of CAN initiation, graft polymers with a high PAA content can hardly be obtained when the polymerization is performed under nitrogen and at < 0.06 mol/L HNO3 concentration. It has been found that incorporation of a small amount of oxygen in a protective nitrogen gas accelerates markedly the graft polymerization, and that the resulting graft polymers can not be separated by acetone precipitation technique in most cases. The Dalian nitrogen(containing 0.7% oxygen) is a good protective gas for CAN-initiated PVAL-AA graft polymerization.
Resumo:
Electrochemical polymerization of 4-vinylpyridine produced a uniform poly(4-vinyl)pyridine(PVP) film on the glassy carbon (GC) electrode surface. The isopolymolybdic acid-PVP film-modified electrode was prepared by soaking the PVP/GC electrode in the 0.05 M H2SO4 aqueous solution containing 0.005 M isopolymolybdic acid (H4Mo8O26). The latter (catalyst) is incorporated and held in the PVP film electrostatically. The electrochemical behavior and electrocatalytic properties of this H4Mo8O26-PVP/GC electrode was described. The results indicate that this modified electrode has good stability and electrocatalytic activity on the reduction of chlorate and bromate ions in aqueous solution. The catalytic process is regarded as an EC mechanism.
Resumo:
Blends of poly(N-vinyl-2-pyrrolidone) (PVP) with a copolyamide (CoPA) randomly composed of 1:1:1 (wt) nylon 6, nylon 66 and nylon 610 structural units were prepared by casting from a common solvent. They were found to be miscible and show a single, composition-dependent glass transition temperature (T(g)). The addition of PVP to CoPA significantly lowers the crystallinity owing to an increasing T(g) of the system. The observed miscibility is proposed to be the result of specific interactions between the proton acceptor groups of PVP and the amide groups of CoPA.
Resumo:
In the title compound, [Cu(NCS)(2)(C5H6N2)(2)], each Cu atom is coordinated by two N atoms from two Eim (Eim = 1-vinyl-1H-imidazole) ligands and two N atoms from two isothiocyanate groups. The Cu atom adopts a square-planar geometry. The mean Cu-N(Eim) and Cu-N(NCS) distances are 1.960 (6) and 1.993 (6) angstrom, respectively.