943 resultados para Ventral hippocampus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study uses a molecular technique called MARCM (Mosaic Analysis with a Repressible Cell Marker) to label neuronal lineages that overexpress the Hox gene Ultrabithorax (Ubx) in an unlabeled, wild type background. The results indicate that the overexpression of Ubx is sufficient to transform more anterior neuronal lineages to themorphology of their more posterior counterparts. The data presented here begin to elucidate the role that the Hox genes have in shaping segment-specific neural connections in the post-embryonic ventral nervous system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major unresolved question in developmental neurobiology is how the nervous system is adapted to the specific needs of the organism at different life stages. In the holometabolous insect Drosophila melanogaster, the larval ventral nervous system (VNS) is comprised of similar repeating segments, as opposed to the adult VNS, which varies greatly from segment to segment both in number and types of neurons. The adult-specific neurons of each segment are generated by 25 distinct types of neuronal progenitor cells called neuroblasts (NBs) that appear in a stereotyped array (Truman et al., 2004). Each NB divides repeatedly to produce a distinct set of daughter cells termed a lineage, which is bilaterally symmetric but present to varying degrees in each segment. These daughter cells can be distinguished by their position within the nervous system as well as by their axonal projections. Each of the 25 NBs produces neurons; if both daughter cells are present in a lineage then both sibling populations survived, whereas if only one projection is seen cell death occurred, leaving a hemilineage (half lineage). In some lineages, the same sibling type survives in all segments in which the lineage appears, but in others, the surviving sibling type varies across segments, resulting in a different morphology for the same lineage in different segments. How are these differences in survival and morphology controlled? The Hox genes provide positional information for developing structures along the anterior-posterior (AP) axis of animals. They encode transcription factors, thereby controlling the activity of genes down stream. In the postembryonic VNS, each NB lineage features its own characteristic expression pattern of Hox genes Antp and Ubx, which can vary from segment-to-segment, and can thereby cause variation in the number of neural cells and axonal projections that survive. This study defines the wild-type expression pattern of Antp and elucidates the role of Antp in gain of function studies. These studies are possible due to the MARCM (Mosaic Analysis with a Repressible Cell Marker) method, which allows the genetically manipulated cells to be specifically labeled in an otherwise normal, unlabeled organism. The results indicate that Antp is expressed in a segment-, lineage-, and hemilineage-specific manner. Antp is sufficient for both anterior and posterior transformations of particular lineages, including promotion of cell death and/or survival as well as axon guidance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glial-cell-line-derived neurotrophic factor (GDNF), neurturin (NRTN), artemin (ARTN) and persephin (PSPN), known as the GDNF family ligands (GFLs), influence the development, survival and differentiation of cultured dopaminergic neurons from ventral mesencephalon (VM). Detailed knowledge about the effects of GFLs on other neuronal populations in the VM is essential for their potential application as therapeutic molecules for Parkinson's disease. Hence, in a comparative study, we investigated the effects of GFLs on cell densities and morphological differentiation of gamma-aminobutyric acid-immunoreactive (GABA-ir) and serotonin-ir (5-HT-ir) neurons in primary cultures of E14 rat VM. We observed that all GFLs [10 ng/ml] significantly increased GABA-ir cell densities (1.6-fold) as well as neurite length/neuron. However, only GDNF significantly increased the number of primary neurites/neuron, and none of the GFLs affected soma size of GABA-ir neurons. In contrast, only NRTN treatment significantly increased 5-HT-ir cells densities at 10 ng/ml (1.3-fold), while an augmentation was seen for GDNF and PSPN at 100 ng/ml (2.4-fold and 1.7-fold, respectively). ARTN had no effect on 5-HT-ir cell densities. Morphological analysis of 5-HT-ir neurons revealed a significant increase of soma size, number of primary neurites/neuron and neurite length/neuron after GDNF exposure, while PSPN only affected soma size, and NRTN and ARTN failed to exert any effect. In conclusion, we identified GFLs as effective neurotrophic factors for VM GABAergic and serotonergic neurons, demonstrating characteristic individual action profiles emphasizing their important and distinct roles during brain development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Pneumococcal meningitis is associated with high mortality (approximately 30%) and morbidity. Up to 50% of survivors are affected by neurological sequelae due to a wide spectrum of brain injury mainly affecting the cortex and hippocampus. Despite this significant disease burden, the genetic program that regulates the host response leading to brain damage as a consequence of bacterial meningitis is largely unknown.We used an infant rat model of pneumococcal meningitis to assess gene expression profiles in cortex and hippocampus at 22 and 44 hours after infection and in controls at 22 h after mock-infection with saline. To analyze the biological significance of the data generated by Affymetrix DNA microarrays, a bioinformatics pipeline was used combining (i) a literature-profiling algorithm to cluster genes based on the vocabulary of abstracts indexed in MEDLINE (NCBI) and (ii) the self-organizing map (SOM), a clustering technique based on covariance in gene expression kinetics. RESULTS: Among 598 genes differentially regulated (change factor > or = 1.5; p < or = 0.05), 77% were automatically assigned to one of 11 functional groups with 94% accuracy. SOM disclosed six patterns of expression kinetics. Genes associated with growth control/neuroplasticity, signal transduction, cell death/survival, cytoskeleton, and immunity were generally upregulated. In contrast, genes related to neurotransmission and lipid metabolism were transiently downregulated on the whole. The majority of the genes associated with ionic homeostasis, neurotransmission, signal transduction and lipid metabolism were differentially regulated specifically in the hippocampus. Of the cell death/survival genes found to be continuously upregulated only in hippocampus, the majority are pro-apoptotic, while those continuously upregulated only in cortex are anti-apoptotic. CONCLUSION: Temporal and spatial analysis of gene expression in experimental pneumococcal meningitis identified potential targets for therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Ventral hernia repair is increasingly performed by laparoscopic means since the introduction of dual-layer meshes. This study aimed to compare the early complications and cost effectiveness of open hernia repair with those associated with laparoscopic repair. METHODS: Open ventral hernia repair was performed for 92 consecutive patients using a Vypro mesh, followed by laparoscopic repair for 49 consecutive patients using a Parietene composite mesh. RESULTS: The rate of surgical-site infections was significantly higher with open ventral hernia repair (13 vs 1; p = 0.03). The median length of hospital stay was significantly shorter with laparoscopic surgery (7 vs 6 days; p = 0.02). For laparoscopic repair, the direct operative costs were higher (2,314 vs 2,853 euros; p = 0.03), and the overall hospital costs were lower (9,787 vs 7,654 euros; p = 0.02). CONCLUSIONS: Laparoscopic ventral hernia repair leads to fewer surgical-site infections and a shorter hospital stay than open repair. Despite increased operative costs, overall hospital costs are lowered by laparoscopic ventral hernia repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To design and evaluate a novel computer-assisted, fluoroscopy-based planning and navigation system for minimally invasive ventral spondylodesis of thoracolumbar fractures. MATERIALS AND METHODS: Instruments and an image intensifier are tracked with the SurgiGATE navigation system (Praxim-Medivision). Two fluoroscopic images, one acquired from anterior-posterior (AP) direction and the other from lateral-medial (LM) direction, are used for the complete procedure of planning and navigation. Both of them are calibrated with a custom-made software to recover their projection geometry and to co-register them to a common patient reference coordinate system, which is established by attaching an opto-electronically trackable dynamic reference base (DRB) on the operated vertebra. A bi-planar landmark reconstruction method is used to acquire deep-seated anatomical landmarks such that an intraoperative planning of graft bed can be interactively done. Finally, surgical actions such as the placement of the stabilization devices and the formation of the graft bed using a custom-made chisel are visualized to the surgeon by superimposing virtual instrument representations onto the acquired images. The distance between the instrument tip and each wall of the planned graft bed are calculated on the fly and presented to the surgeon so that the surgeon could formalize the graft bed exactly according to his/her plan. RESULTS: Laboratory studies on phantom and on 27 plastic vertebras demonstrate the high precision of the proposed navigation system. Compared with CT-based measurement, a mean error of 1.0 mm with a standard deviation of 0.1 mm was found. CONCLUSIONS: The proposed computer assisted, fluoroscopy-based planning and navigation system promises to increase the accuracy and reliability of minimally invasive ventral spondylodesis of thoracolumbar fractures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present in situ hybridization and immunocytochemical studies in the mouse central nervous system (CNS), a strong expression of spastin mRNA and protein was found in Purkinje cells and dentate nucleus in the cerebellum, in hippocampal principal cells and hilar neurons, in amygdala, substantia nigra, striatum, in the motor nuclei of the cranial nerves and in different layers of the cerebral cortex except piriform and entorhinal cortices where only neurons in layer II were strongly stained. Spastin protein and mRNA were weakly expressed in most of the thalamic nuclei. In selected human brain regions such as the cerebral cortex, cerebellum, hippocampus, amygdala, substania nigra and striatum, similar results were obtained. Electron microscopy showed spastin immunopositive staining in the cytoplasma, dendrites, axon terminals and nucleus. In the mouse pilocarpine model of status epilepticus and subsequent temporal lobe epilepsy, spastin expression disappeared in hilar neurons as early as at 2h during pilocarpine induced status epilepticus, and never recovered. At 7 days and 2 months after pilocarpine induced status epilepticus, spastin expression was down-regulated in granule cells in the dentate gyrus, but induced expression was found in reactive astrocytes. The demonstration of widespread distribution of spastin in functionally different brain regions in the present study may provide neuroanatomical basis to explain why different neurological, psychological disorders and cognitive impairment occur in patients with spastin mutation. Down-regulation or loss of spastin expression in hilar neurons may be related to their degeneration and may therefore initiate epileptogenetic events, leading to temporal lobe epilepsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We showed that when CA3 pyramidal neurons in the caudal 80% of the dorsal hippocampus had almost disappeared completely, the efferent pathway of CA3 was rarely detectable. We used the mouse pilocarpine model of temporal lobe epilepsy (TLE), and injected iontophoretically the anterograde tracer phaseolus vulgaris leucoagglutinin (PHA-L) into gliotic CA3, medial septum and the nucleus of diagonal band of Broca, median raphe, and lateral supramammillary nuclei, or the retrograde tracer cholera toxin B subunit (CTB) into gliotic CA3 area of hippocampus. In the afferent pathway, the number of neurons projecting to CA3 from medial septum and the nucleus of diagonal band of Broca, median raphe, and lateral supramammillary nuclei increased significantly. In the hippocampus, where CA3 pyramidal neurons were partially lost, calbindin, calretinin, parvalbumin immunopositive back-projection neurons from CA1-CA3 area were observed. Sprouting of Schaffer collaterals with increased number of large boutons in both sides of CA1 area, particularly in the stratum pyramidale, was found. When CA3 pyramidal neurons in caudal 80% of the dorsal hippocampus have almost disappeared completely, surviving CA3 neurons in the rostral 20% of the dorsal hippocampus may play an important role in transmitting hyperactivity of granule cells to surviving CA1 neurons or to dorsal part of the lateral septum. We concluded that reorganization of CA3 area with its downstream or upstream nuclei may be involved in the occurrence of epilepsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adverse effects of cDNA and oligonucleotide delivery methods have not yet been systematically analyzed. We introduce a protocol to monitor toxic effects of two non-viral lipid-based gene delivery protocols using CNS primary tissue. Cell membrane damage was monitored by quantifying cellular uptake of propidium iodide and release of cytosolic lactate dehydrogenase to the culture medium. Using a liposomal transfection reagent, cell membrane damage was already seen 24 hr after transfection. Nestin-positive target cells, which were used as morphological correlate, were severely diminished in some areas of the cultures after liposomal transfection. In contrast, the non-liposomal transfection reagent revealed no signs of toxicity. This approach provides easily accessible information of transfection-associated toxicity and appears suitable for prescreening of transfection reagents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To report clinical and diagnostic imaging features, and outcome after surgical treatment of ventral intraspinal cysts in dogs. STUDY DESIGN: Retrospective study. ANIMALS: Dogs (n=7) with ventral intraspinal cysts. METHODS: Clinical signs, magnetic resonance imaging (MRI) findings and surgical findings of 7 dogs and histologic findings (1 dog) with intraspinal cysts associated with the intervertebral disc were reviewed. RESULTS: Ventral intraspinal cyst is characterized by: (1) clinical signs indistinguishable from those of typical disc herniation; (2) an extradural, round to oval, mass lesion with low T1 and high T2 signal intensity on MRI, compatible with a liquid-containing cyst; (3) cyst is in close proximity to the intervertebral disc; and (4) MRI signs of disc degeneration. Although the exact cause is unknown, underlying minor disc injury may predispose to cyst formation. CONCLUSION: Intraspinal cysts have clinical signs identical to those of disc herniation. Given the close proximity of the cyst to the corresponding disc and the similarity of MRI findings to discal cysts in humans, we propose the term "canine discal cyst" to describe this observation. CLINICAL RELEVANCE: Discal cysts should be considered in the differential choices for cystic extradural compressing lesions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ventral mesencephalic (VM) precursor cells are of interest in the search for transplantable dopaminergic neurons for cell therapy in Parkinson's disease (PD). In the present study we investigated the survival and functional capacity of in vitro expanded, primary VM precursor cells after intrastriatal grafting to a rat model of PD. Embryonic day 12 rat VM tissue was mechanically dissociated and cultured for 4 or 8 days in vitro (DIV) in the presence of FGF2 (20 ng/ml), FGF8 (20 ng/ml) or without mitogens (control). Cells were thereafter differentiated for 6 DIV by mitogen withdrawal and addition of serum. After differentiation, significantly more tyrosine hydroxylase-immunoreactive (TH-ir), dopamine-producing neurons were found in FGF2- and FGF8-expanded cultures compared to controls. Moreover, expansion for 4 DIV resulted in significantly more TH-ir cells than expansion for 8 DIV both for FGF2 (2.4 fold; P<0.001) and FGF8 (3.8 fold; P<0.001) treated cultures. The functional potential of the expanded cells (4 DIV) was examined after grafting into striatum of aged 6-hydroxydopamine-lesioned rats. Amphetamine-induced rotations performed 3, 6 and 9 weeks postgrafting revealed that grafts of FGF2-expanded cells induced a significantly faster and better functional recovery than grafts of FGF8-expanded cells or control cells (P<0.05 for both). Grafts of FGF2-expanded cells also contained significantly more TH-ir cells than grafts of FGF8-expanded cells (P<0.05) or control cells (P<0.01). In conclusion, FGF2-mediated pregrafting expansion of primary VM precursor cells considerably improves dopaminergic cell survival and functional restoration in a rat model of PD.