951 resultados para Variational calculus
Resumo:
A variational analysis of the spiked harmonic oscillator Hamiltonian -d2/dr2 + r2 + lambda/r5/2, lambda > 0, is reported. A trial function automatically satisfying both the Dirichlet boundary condition at the origin and the boundary condition at infinity is introduced. The results are excellent for a very large range of values of the coupling parameter lambda, suggesting that the present variational function is appropriate for the treatment of the spiked oscillator in all its regimes (strong, moderate, and weak interactions).
Resumo:
Many variational inequality problems (VIPs) can be reduced, by a compactification procedure, to a VIP on the canonical simplex. Reformulations of this problem are studied, including smooth reformulations with simple constraints and unconstrained reformulations based on the penalized Fischer-Burmeister function. It is proved that bounded level set results hold for these reformulations under quite general assumptions on the operator. Therefore, it can be guaranteed that minimization algorithms generate bounded sequences and, under monotonicity conditions, these algorithms necessarily nd solutions of the original problem. Some numerical experiments are presented.
Resumo:
A self-consistent equilibrium calculation, valid for arbitrary aspect ratio tokamaks, is obtained through a direct variational technique that reduces the equilibrium solution, in general obtained from the 2D Grad-Shafranov equation, to a 1D problem in the radial flux coordinate rho. The plasma current profile is supposed to have contributions of the diamagnetic, Pfirsch-Schluter and the neoclassical ohmic and bootstrap currents. An iterative procedure is introduced into our code until the flux surface averaged toroidal current density (J(T)), converges to within a specified tolerance for a given pressure profile and prescribed boundary conditions. The convergence criterion is applied between the (J(T)) profile used to calculate the equilibrium through the variational procedure and the one that results from the equilibrium and given by the sum of all current components. The ohmic contribution is calculated from the neoclassical conductivity and from the self-consistently determined loop voltage in order to give the prescribed value of the total plasma current. The bootstrap current is estimated through the full matrix Hirshman-Sigmar model with the viscosity coefficients as proposed by Shaing, which are valid in all plasma collisionality regimes and arbitrary aspect ratios. The results of the self-consistent calculation are presented for the low aspect ratio tokamak Experimento Tokamak Esferico. A comparison among different models for the bootstrap current estimate is also performed and their possible Limitations to the self-consistent calculation is analysed.
Resumo:
The methodology based on the association of the variational method with supersymmetric quantum mechanics is used to evaluate the energy states of the confined hydrogen atom. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
It is demonstrated, contrary to various claims, that the phase shifts calculated via variational principles involving the Green function may exhibit anomalous behavior. These anomalies may appear in variational principles for the K matrix (Schwinger variational principle) of potential V, for (K-V) (Kohn-type and Newton variational principles), and other variational principles of higher order (Takatsuka-McKoy variational principle).
Resumo:
The formalism of supersymmetric quantum mechanics is used to determine trial functions in order to obtain eigenvalues for the Lennard-Jones (12, 6) potential from variational method. The superpotential obtained provides an effective potential which can be directly comparable to the original one.
Resumo:
We show that the ground-state energy of the q-deformed Lipkin-Meshkov-Glick Hamiltonian can be estimated by q-deformed coherent states. We also use these coherent states to analyse qualitatively the suppression of the second order ground-state energy phase transition of this model. © 1993.
Resumo:
A parameter-free variational iterative method is proposed for scattering problems. The present method yields results that are far better, in convergence, stability and precision, than any other momentum space method. Accurate result is obtained for the atomic exponential (Yukawa) potential with an estimated error of less than 1 in 1015 (1010) after some 13 (10) iterations.
Resumo:
The Variational Method is applied within the context of Supersymmetric Quantum Mechanics to provide information about the energy and eigenfunction of the lowest levels of a Hamiltonian. The approach is illustrated by the case of the Morse potential applied to several diatomic molecules and the results are compared with stabilished results. (C) 2000 Elsevier Science B.V.
Resumo:
The formalism of supersymmetric quantum mechanics supplies a trial wave function to be used in the variational method. The screened Coulomb potential is analyzed within this approach. Numerical and exact results for energy eigenvalues are compared.
Resumo:
We analyze the average performance of a general class of learning algorithms for the nondeterministic polynomial time complete problem of rule extraction by a binary perceptron. The examples are generated by a rule implemented by a teacher network of similar architecture. A variational approach is used in trying to identify the potential energy that leads to the largest generalization in the thermodynamic limit. We restrict our search to algorithms that always satisfy the binary constraints. A replica symmetric ansatz leads to a learning algorithm which presents a phase transition in violation of an information theoretical bound. Stability analysis shows that this is due to a failure of the replica symmetric ansatz and the first step of replica symmetry breaking (RSB) is studied. The variational method does not determine a unique potential but it allows construction of a class with a unique minimum within each first order valley. Members of this class improve on the performance of Gibbs algorithm but fail to reach the Bayesian limit in the low generalization phase. They even fail to reach the performance of the best binary, an optimal clipping of the barycenter of version space. We find a trade-off between a good low performance and early onset of perfect generalization. Although the RSB may be locally stable we discuss the possibility that it fails to be the correct saddle point globally. ©2000 The American Physical Society.
Resumo:
A basis-set calculation scheme for S-waves Ps-He elastic scattering below the lowest inelastic threshold was formulated using a variational expression for the transition matrix. The scheme was illustrated numerically by calculating the scattering length in the electronic doublet state: a=1.0±0.1 a.u.
Resumo:
Variational inequalities and related problems may be solved via smooth bound constrained optimization. A comprehensive discussion of the important features involved with this strategy is presented. Complementarity problems and mathematical programming problems with equilibrium constraints are included in this report. Numerical experiments are commented. Conclusions and directions of future research are indicated.