960 resultados para Underground cavities
Resumo:
In studies related to deep geological disposal of radioactive waste, it is current practice to transfer external information (e.g. from other sites, from underground rock laboratories or from natural analogues) to safety cases for specific projects. Transferable information most commonly includes parameters, investigation techniques, process understanding, conceptual models and high-level conclusions on system behaviour. Prior to transfer, the basis of transferability needs to be established. In argillaceous rocks, the most relevant common feature is the microstructure of the rocks, essentially determined by the properties of clay–minerals. Examples are shown from the Swiss and French programmes how transfer of information was handled and justified. These examples illustrate how transferability depends on the stage of development of a repository safety case and highlight the need for adequate system understanding at all sites involved to support the transfer.
Resumo:
Lautropia mirabilis, a pleomorphic, motile, gram-negative coccus, has been isolated from the oral cavities of 32 of 60 (53.3%) children infected with human immunodeficiency virus (HIV) and 3 of 25 (12.0%) HIV-uninfected controls; the association of L. mirabilis isolation with HIV infection is significant (P < 0.001). All children in the study, both HIV-infected children and controls, were born to HIV-infected mothers. The presence of this bacterium was not associated with clinical disease in these children. The HIV-infected children with L. mirabilis did not differ from the HIV-infected children without L. mirabilis in immunological status, clinical status, or systemic medications. The role of HIV infection itself or concomitant factors in the establishment of L. mirabilis in the oral cavity remains to be elucidated.
Resumo:
The diffusion properties of the Opalinus Clay were studied in the underground research laboratory at Mont Terri (Canton Jura, Switzerland) and the results were compared with diffusion data measured in the laboratory on small-scale samples. The diffusion of HTO, Na-22(+), Cs+ and I- were investigated for a period of 10 months. The diffusion equipment used in the field experiment was designed in such a way that a solution of tracers was circulated through a sintered metal screen placed at the end of a borehole drilled in the formation. The concentration decrease caused by the diffusion of tracers into the rock could be followed with time and allowed first estimations of the effective diffusion coefficient. After 10 months, the diffusion zone was over-cored and the tracer profiles measured. From these profiles, effective diffusion coefficients and rock capacity factors Could be extracted by applying a two-dimensional transport model including diffusion and sorption. The simulations were done with the reactive transport code CRUNCH. In addition, results obtained from through-diffusion experiments oil small-sized samples with HTO, Cl-36(-) and Na-22(+) are presented and compared with the in situ data. In all cases. excellent agreement between the two data sets exists. Results for Cs+ indicated five times higher diffusion rates relative to HTO. Corresponding laboratory diffusion measurements are still lacking. However. our Cs+ data are in qualitative agreement wish through-diffusion data for Callovo-Oxfordian argillite rock samples. which also indicate significantly higher effective diffusivities for Cs+ relative to HTO.
Resumo:
Photopolymerized hydrogels are commonly used for a broad range of biomedical applications. As long as the polymer volume is accessible, gels can easily be hardened using light illumination. However, in clinics, especially for minimally invasive surgery, it becomes highly challenging to control photopolymerization. The ratios between polymerization- volume and radiating-surface-area are several orders of magnitude higher than for ex-vivo settings. Also tissue scattering occurs and influences the reaction. We developed a Monte Carlo model for photopolymerization, which takes into account the solid/liquid phase changes, moving solid/liquid-boundaries and refraction on these boundaries as well as tissue scattering in arbitrarily designable tissue cavities. The model provides a tool to tailor both the light probe and the scattering/absorption properties of the photopolymer for applications such as medical implants or tissue replacements. Based on the simulations, we have previously shown that by adding scattering additives to the liquid monomer, the photopolymerized volume was considerably increased. In this study, we have used bovine intervertebral disc cavities, as a model for spinal degeneration, to study photopolymerization in-vitro. The cavity is created by enzyme digestion. Using a custom designed probe, hydrogels were injected and photopolymerized. Magnetic resonance imaging (MRI) and visual inspection tools were employed to investigate the successful photopolymerization outcomes. The results provide insights for the development of novel endoscopic light-scattering polymerization probes paving the way for a new generation of implantable hydrogels.
Resumo:
A cross-section of the Inn-valley has been surveyed by refraction- and refiection-seismic and gravimetrie methods. The thickness of the Inn-va.!ley sediments is 340- 390 m. At the northern edge of the valley an intermediate layer between sediments and basement has been detected, which is up to 300 ITl thick. This zone seems to mark the boundary of the northern calcareous alps.
Resumo:
Strontium-90 activity concentrations in surface soils and areal deposition densities have been studied at a site contaminated by an accidental release to atmosphere from the underground nuclear explosion 'Kraton-3' conducted near the Polar Circle (65.9°N, 112.3°E) within the territory of the former USSR in 1978. In 2001-2002, the ground surface contamination at 14 plots studied ranged from 20 to 15000 kBq/m**2, which significantly exceeds the value of 0.44 kBq/m**2 deduced for three background plots. The zone with substantial radiostrontium contamination extends, at least, 2.5 km in a north-easterly direction from the borehole. The average 137Cs/90Sr ratio in the ground contamination originated from the 'Kraton-3' fallout was estimated to be 0.55, which is significantly different from the ratio of 2.05 evaluated for background plots contaminated mostly from global fallout. Although vertical migration of 90Sr in all undisturbed soil profiles studied is more rapid than that for 137Cs, the depth of percolation of both radionuclides into the ground is mostly limited to the top 10-20 cm, which may be explained, primarily, by permafrost conditions. The horizontal migration rate of radiostrontium in the aqueous phase exceeds the radiocaesium migration rate by many times. This phenomenon seems to be a reason for the significant enrichment of the soil surface layers by radiostrontium at some sites, with variations occurring in accordance with small-scale irregularities of landscape.
Resumo:
Results of studying isotopic composition of helium in underground fluids of the Baikal-Mongolian region during the last quarter of XX century are summarized. Determinations of 3He/4He ratio in 139 samples of gas phase from fluids, collected at 104 points of the Baikal rift zone and adjacent structures are given. 3He/4He values lie within the range from 1x10**-8 (typical for crustal radiogenic helium) to 1.1x10**-5 (close to typical MORB reservoir). Repeated sampling in some points during more than 20 years showed stability of helium isotopic composition in time in each of them at any level of 3He/4He values. There is no systematic differences of 3He/4He in samples from surface water sources and deeper intervals of boreholes in the same areas. Universal relationship between isotopic composition of helium and general composition of gas phase is absent either, but the minimum 3He/4He values occurred in methane gas of hydrocarbon deposits, whereas in nitrogen and carbon dioxide gases of helium composition varied (in the latter maximum 3He/4He values have been measured). According to N2/Ar_atm ratio nitrogen gases are atmospheric. In carbonic gas fN2/fNe ratio indicates presence of excessive (non-atmogenic) nitrogen, but the attitude CO2/3He differs from one in MORB. Comparison of helium isotopic composition with its concentration and composition of the main components of gas phase from fluids shows that it is formed under influence of fractionation of components with different solubility in the gas-water system and generation/consumption of reactive gases in the crust. Structural and tectonic elements of the region differ from the spectrum of 3He/4He values. At the pre-Riphean Siberian Platform the mean 3He/4He = (3.6+/-0.9)x10**- 8 is very close to radiogenic one. In the Paleozoic crust of Khangay 3He/4He = (16.3+/-4.6)x10**-8, and the most probable estimate is (12.3+/-2.9)x10**-8. In structures of the eastern flank of the Baikal rift zone (Khentei, Dauria) affected by the Mz-Kz activization 3He/4He values range from 4.4x10**-8 to 2.14x10**-6 (average 0.94x10**-6). Distribution of 3He/4He values across the strike of the Baikal rift zone indicates advective heat transfer from the mantle not only in the rift zone, but also much further to the east. In fluids of the Baikal rift zone range of 3He/4He values is the widest: from 4x10**-8 to 1.1x10**-5. Their variations along the strike of the rift zone are clearly patterned, namely, decrease of 3He/4He values in both directions from the Tunka depression. Accompanied by decrease in density of conductive heat flow and in size of rift basins, this trend indicates decrease in intensity of advective heat transfer from the mantle to peripheral segments of the rift zone. Comparing this trend with data on other continental rift zones and mid-ocean ridges leads to the conclusion about fundamental differences in mechanisms of interaction between the crust and the mantle in these environments.
Resumo:
In this paper, vehicle-track interaction for a new slab track design, conceived to reduce noise and vibration levels has been analyzed, assessing the derailment risk for trains running on curved track when encountering a broken rail. Two different types of rail fastening systems with different elasticities have been analysed and compared. Numerical methods were used in order to simulate the dynamic behaviour of the train-track interaction. Multibody system (MBS) modelling techniques were combined with techniques based on the finite element method (FEM). MBS modelling was used for modelling the vehicle and FEM for simulating the elastic track. The simulation model was validated by comparing simulated results to experimental data obtained in field testing. During the simulations various safety indices, characteristic of derailment risk, were analysed. The simulations realised at the maximum running velocity of 110 km/h showed a similar behaviour for several track types. When reducing the running speed, the safety indices worsened for both cases. Although the worst behaviour was observed for the track with a greater elasticity, in none of the simulations did a derailment occur when running over the broken rail.
Resumo:
Vehicle–track interaction for a new resilient slab track designed to reduce noise and vibration levels was analysed, in order to assess the derailment risk on a curved track when encountering a broken rail. Sensitivity of the rail support spacing of the relative position of the rail breakage between two adjacent rail supports and of running speed were analysed for two different elasticities of the rail fastening system. In none of the cases analysed was observed an appreciable difference between either of the elastic systems. As was expected, the most unfavourable situations were those with greater rail support spacing and those with greater distance from the breakage to the nearest rail support, although in none of the simulations performed did a derailment occur when running over the broken rail. When varying the running speed, the most favourable condition was obtained for an intermediate speed, due to the superposition of two antagonistic effects.
Resumo:
Overhead rail current collector systems for railway traction offer certain features, such as low installation height and reduced maintenance, which make them predominantly suitable for use in underground train infrastructures. Due to the increased demands of modern catenary systems and higher running speeds of new vehicles, a more capable design of the conductor rail is needed. A new overhead conductor rail has been developed and its design has been patented [13]. Modern simulation and modelling techniques were used in the development approach. The new conductor rail profile has a dynamic behaviour superior to that of the system currently in use. Its innovative design permits either an increase of catenary support spacing or a higher vehicle running speed. Both options ensure savings in installation or operating costs. The simulation model used to optimise the existing conductor rail profile included both a finite element model of the catenary and a three-dimensional multi-body system model of the pantograph. The contact force that appears between pantograph and catenary was obtained in simulation. A sensitivity analysis of the key parameters that influence in catenary dynamics was carried out, finally leading to the improved design.
Resumo:
Flat or worn wheels rolling on rough or corrugated tracks can provoke airborne noise and ground-borne vibration, which can be a serious concern for nearby neighbours of urban rail transit lines. Among the various treatments used to reduce vibration and noise, resilient wheels play an important role. In conventional resilient wheels, a slightly prestressed Vshaped rubber ring is mounted between the steel wheel centre and tyre. The elastic layer enhances rolling noise and vibration suppression, as well as impact reduction on the track. In this paper the effectiveness of resilient wheels in underground lines, in comparison to monobloc ones, is assessed. The analysed resilient wheel is able to carry greater loads than standard resilient wheels used for light vehicles. It also presents a greater radial resiliency and a higher axial stiffness than conventional Vwheels. The finite element method was used in this study. A quarter car model was defined, in which the wheelset was modelled as an elastic body. Several simulations were performed in order to assess the vibrational behaviour of elastic wheels, including modal, harmonic and random vibration analysis, the latter allowing the introduction of realistic vertical track irregularities, as well as the influence of the running speed. Due to numerical problems some simplifications were needed. Parametric variations were also performed, in which the sensitivity of the whole system to variations of rubber prestress and Poisson’s ratio of the elastic material was assessed.Results are presented in the frequency domain, showing a better performance of the resilient wheels for frequencies over 200 Hz. This result reveals the ability of the analyzed design to mitigate rolling noise, but not structural vibrations, which are primarily found in the lower frequency range.
Resumo:
Multijunction solar cells present a certain reflectivity on its surface that lowers its light absorption. This reflectivity produces a loss in electrical efficiency and thus a loss in global energy production for CPV systems. We present here an optical design for recovering this portion of reflected light, and thus leading to a system efficiency increase. This new design is based on an external confinement cavity, an optical element able to redirect the light reflected by the cell towards its surface again. We have proven the excellent performance of these cavities integrated in CPV modules offering outstanding results: 33.2% module electrical efficiency @Tcell = 25 °C and relative efficiency and Isc gains of over 6%
Resumo:
In many cases the only places available for the construction of a new car park are the existing streets or roads. These streets may also have important or historic buildings very close to the structure, which means that they cannot be disturbed in any way during the construction of the parking structure. In many cases the only places available for the construction of a new car park are the existing streets or roads. These streets may also have important or historic buildings very close to the structure, which means that they cannot be disturbed in any way during the construction of the parking structure.