954 resultados para Ultrasonic velocity
Resumo:
Films that feature high-speed diegetic motion, and present those high speeds through fast mobile framing and fast cutting, are frequently charged with generating a sensory overload which empties out meaning or any sense of spatial orientation. Inherent in this discourse is a privileging of optical-spatial intelligibility that suppresses consideration of the ways cinema can represent diegetic velocity, and the spectator’s sensory experience of the same. This paper will instead highlight the centrality of the evocation of a trajectory for movement for the spectator’s experience of diegetic speed, an evocation that does not depend on optical-spatial legibility for its affective force.
Resumo:
Data from 58 strong-lensing events surveyed by the Sloan Lens ACS Survey are used to estimate the projected galaxy mass inside their Einstein radii by two independent methods: stellar dynamics and strong gravitational lensing. We perform a joint analysis of these two estimates inside models with up to three degrees of freedom with respect to the lens density profile, stellar velocity anisotropy, and line-of-sight (LOS) external convergence, which incorporates the effect of the large-scale structure on strong lensing. A Bayesian analysis is employed to estimate the model parameters, evaluate their significance, and compare models. We find that the data favor Jaffe`s light profile over Hernquist`s, but that any particular choice between these two does not change the qualitative conclusions with respect to the features of the system that we investigate. The density profile is compatible with an isothermal, being sightly steeper and having an uncertainty in the logarithmic slope of the order of 5% in models that take into account a prior ignorance on anisotropy and external convergence. We identify a considerable degeneracy between the density profile slope and the anisotropy parameter, which largely increases the uncertainties in the estimates of these parameters, but we encounter no evidence in favor of an anisotropic velocity distribution on average for the whole sample. An LOS external convergence following a prior probability distribution given by cosmology has a small effect on the estimation of the lens density profile, but can increase the dispersion of its value by nearly 40%.
Resumo:
We study compressible magnetohydrodynamic turbulence, which holds the key to many astrophysical processes, including star formation and cosmic-ray propagation. To account for the variations of the magnetic field in the strongly turbulent fluid, we use wavelet decomposition of the turbulent velocity field into Alfven, slow, and fast modes, which presents an extension of the Cho & Lazarian decomposition approach based on Fourier transforms. The wavelets allow us to follow the variations of the local direction of the magnetic field and therefore improve the quality of the decomposition compared to the Fourier transforms, which are done in the mean field reference frame. For each resulting component, we calculate the spectra and two-point statistics such as longitudinal and transverse structure functions as well as higher order intermittency statistics. In addition, we perform a Helmholtz-Hodge decomposition of the velocity field into incompressible and compressible parts and analyze these components. We find that the turbulence intermittency is different for different components, and we show that the intermittency statistics depend on whether the phenomenon was studied in the global reference frame related to the mean magnetic field or in the frame defined by the local magnetic field. The dependencies of the measures we obtained are different for different components of the velocity; for instance, we show that while the Alfven mode intermittency changes marginally with the Mach number, the intermittency of the fast mode is substantially affected by the change.
Resumo:
A new method for determining the temporal evolution of plasma rotation is reported in this work. The method is based upon the detection of two different portions of the spectral profile of a plasma impurity line, using a monochromator with two photomultipliers installed at the exit slits. The plasma rotation velocity is determined by the ratio of the two detected signals. The measured toroidal rotation velocities of C III (4647.4 angstrom) and C VI (5290.6 angstrom), at different radial positions in TCABR discharges, show good agreement, within experimental uncertainty, with previous results (Severo et al 2003 Nucl. Fusion 43 1047). In particular, they confirm that the plasma core rotates in the direction opposite to the plasma current, while near the plasma edge (r/a > 0.9) the rotation is in the same direction. This technique was also used to investigate the dependence of toroidal rotation on the poloidal position of gas puffing. The results show that there is no dependence for the plasma core, while for plasma edge (r/a > 0.9) some dependence is observed.
Resumo:
We revisit the non-dissipative time-dependent annular billiard and we consider the chaotic dynamics in two planes of conjugate variables in order to describe the behavior of the growth, or saturation, of the mean velocity of an ensemble of particles. We observed that the changes in the 4-d phase space occur without changing any parameter. They occur depending on where the initial conditions start. The emerging KAM islands interfere in the behavior of the particle dynamics especially in the Fermi acceleration mechanism. We show that Fermi acceleration can be suppressed, without dissipation, even considering the non-dissipative energy context. (C) 2011 Published by Elsevier Ltd.
Resumo:
We consider Discontinuous Galerkin approximations of two-phase, immiscible porous media flows in the global pressure/fractional flow formulation with capillary pressure. A sequential approach is used with a backward Euler step for the saturation equation, equal-order interpolation for the pressure and the saturation, and without any limiters. An accurate total velocity field is recovered from the global pressure equation to be used in the saturation equation. Numerical experiments show the advantages of the proposed reconstruction. To cite this article: A. Ern et al., C R. Acad. Sci. Paris, Ser. 1347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
Measuring ultrasonic communication provides us with a way to study parental influence on animals. In this study I measured the ultrasonic communication between mouse pups and two maternal females, one of which who had given birth to the pups and the other had raised them. I found that there was no significant difference between the amount of noise expressed by pups in response to each the biological mother and foster mother test groups. Mouse pups call to maternal females regardless of genetic relatedness. Communication in mice may be a more complicated model because of their communal nature.
Resumo:
Increasing air movement over poultry by using fans (ventilation) has become an accepted means of reducing environmental heat stress over the last several years. The purpose of this study was to evaluate the effect of air velocity and exposure time to ventilation on body surface and rectal temperature of broiler chickens. Male broiler chickens aged 36-42 days were placed in individual wire cages and exposed to five different air velocities (5.7, 4.2, 3.1, 2.4, or 1.8 m/sec). Throughout the experiment head, back, leg, and rectal temperatures were monitored every 10 min during a 30-min period for each air velocity. The data showed that exposure time to the wind affected (P<.05) leg and body temperature, with a rapid reduction being observed during the first 10 min. There was a reduction in leg temperature with air velocity of 2 m/sec; however, air velocity lower than 4.5 m/sec was not effective in decreasing head and back temperature. The results suggest that air velocity of 2 m/sec, in air temperature of 29 degrees C, improves heat loss in the birds. The data also indicate that exposure time to ventilation seems to be a critical point in the maintenance of bird thermal homeostasis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work presents a cell to measure dynamic viscosity of liquids using ultrasonic wave mode conversion from longitudinal to shear wave. The strategy used to obtain the viscosity is based on the measurement of the complex reflection coefficient of shear waves at a solid-liquid interface. Viscosity measurements of automotive oils (SAE90 and SAE140) were obtained in the frequency range from 1 to 10 MHz. These results are compared with the Maxwell model with two relaxation times, showing the dependency of viscosity with frequency. Several parameters affecting viscosity measurements, including the solid material properties, liquid viscosity, and operating frequency are discussed.
Resumo:
This work presents recent improvements in a density measurement cell with a double-element transducer that can eliminate diffraction effects. A new mechanical design combined with the use of more appropriate materials has resulted in better parallelism between interfaces, more robust assembly, and chemical resistance. A novel method of signal processing, named energy method, is introduced to obtain the reflection coefficient, reducing sensitivity to noise and improving accuracy. The measurement cell operation is verified both theoretically, using an acoustic wave propagation model, and experimentally, using homogeneous liquids with different densities. The accuracy in the density measurement is 0.2% when compared with the measurements made with a pycnometer.
Resumo:
This paper presents a theoretical analysis of a density measurement cell using an unidimensional model composed by acoustic and electroacoustic transmission lines in order to simulate non-ideal effects. The model is implemented using matrix operations, and is used to design the cell considering its geometry, materials used in sensor assembly, range of liquid sample properties and signal analysis techniques. The sensor performance in non-ideal conditions is studied, considering the thicknesses of adhesive and metallization layers, and the effect of residue of liquid sample which can impregnate on the sample chamber surfaces. These layers are taken into account in the model, and their effects are compensated to reduce the error on density measurement. The results show the contribution of residue layer thickness to density error and its behavior when two signal analysis methods are used. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this paper was to develop a model for calculating the economical flow diameter and velocity, by obtaining the economical diameter, using Swamee's friction factor equation, by minimizing the total annual cost. The application of the model to a regular supply condition showed that the diameter of the actual condition, 250 mm, compared with the diameter calculated by the mode, at the same tariff as that applied to the property ( ground), 284.1 mm, involved the necessity to generate, transmit, and distribute extra electrical energy, due to the higher load loss caused by the original diameter, approximately 30800 kWh/year. This means that in one year, the consumer would spend R$2,804.00 more on pumping cost alone.
Resumo:
Objective: To compare the efficiency of an Aeroneb Pro vibrating plate and an Atomisor MegaHertz ultrasonic nebulizer for providing ceftazidime distal lung deposition.Design: In vitro experiments. One gram of cetazidime was nebulized in respiratory circuits and mass median aerodynamic diameter of particles generated by ultrasonic and vibrating plate nebulizers was compared using a laser velocimeter. In vivo experiments. Lung tissue concentrations and extrapulmonary depositions were measured in ten anesthetized ventilated piglets with healthy lungs that received 1 g of ceftazidime by nebulization with either an ultrasonic (n = 5), or a vibrating plate (n = 5) nebulizer.Setting: A two-bed Experimental Intensive Care Unit of a University School of Medicine.Intervention: Following sacrifice, 5 subpleural specimens were sampled in dependent and nondependent lung regions for measuring ceftazidime lung tissue concentrations by high-performance liquid chromatography.Measurements and results: Mass median aerodynamic diameters generated by both nebulizers were similar with more than 95% of the particles between 0.5 and 5 mu m. Lung tissue concentrations were 553 +/- 123 [95% confidence interval: 514-638] mu g g(-1) using ultrasonic nebulizer, and 452 +/- 172 [95% confidence interval: 376-528] mu g g(-1) using vibrating plate nebulizers (NS). Extrapulmonary depositions were, respectively, of 38 +/- 5% (ultrasonic) and 34 +/- 4% (vibrating plate) (NS).Conclusions: Vibrating plate nebulizer is comparable to ultrasonic nebulizers for ceftazidime nebulization. It may represent a new attractive technology for inhaled antibiotic therapy.