956 resultados para UV-visible spectroscopy
Resumo:
A comparative systematic study of the CrO2F2 compound has been performed using different conventional ab initio methodologies and density functional procedures. Two points have been analyzed: first, the accuracy of results yielded by each method under study, and second, the computational cost required to reach such results. Weighing up both aspects, density functional theory has been found to be more appropriate than the Hartree-Fock (HF) and the analyzed post-HF methods. Hence, the structural characterization and spectroscopic elucidation of the full CrO2X2 series (X=F,Cl,Br,I) has been done at this level of theory. Emphasis has been given to the unknown CrO2I2 species, and specially to the UV/visible spectra of all four compounds. Furthermore, a topological analysis in terms of charge density distributions has revealed why the valence shell electron pair repulsion model fails in predicting the molecular shape of such CrO2X2 complexes
Resumo:
Dynamic mixtures of Rh-dye complexes can be used to determine the history of chemical events such as the addition of ATP and ADP by UV-vis spectroscopy.
Resumo:
Tin-oxide nanoparticles with controlled narrow size distributions are synthesized while physically encapsulated inside silica mesoporous templates. By means of ultraviolet-visible spectroscopy, a redshift of the optical absorbance edge is observed. Photoluminescence measurements corroborate the existence of an optical transition at 3.2 eV. The associated band of states in the semiconductor gap is present even on template-synthesized nanopowders calcined at 800°C, which contrasts with the evolution of the gap states measured on materials obtained by other methods. The gap states are thus considered to be surface localized, disappearing with surface faceting or being hidden by the surface-to-bulk ratio decrease.
Resumo:
Lusters are composite thin layers of coinage metal nanoparticles in glass displaying peculiar optical properties and obtained by a process involving ionic exchange, diffusion, and crystallization. In particular, the origin of the high reflectance (golden-shine) shown by those layers has been subject of some discussion. It has been attributed to either the presence of larger particles, thinner multiple layers or higher volume fraction of nanoparticles. The object of this paper is to clarify this for which a set of laboratory designed lusters are analysed by Rutherford backscattering spectroscopy, transmission electron microscopy, x-ray diffraction, and ultraviolet-visible spectroscopy. Model calculations and numerical simulations using the finite difference time domain method were also performed to evaluate the optical properties. Finally, the correlation between synthesis conditions, nanostructure, and optical properties is obtained for these materials.
Resumo:
In this work, we investigate heterojunction emitters deposited by Hot-Wire CVD on p-type crystalline silicon. The emitter structure consists of an n-doped film (20 nm) combined with a thin intrinsic hydrogenated amorphous silicon buffer layer (5 nm). The microstructure of these films has been studied by spectroscopic ellipsometry in the UV-visible range. These measurements reveal that the microstructure of the n-doped film is strongly influenced by the amorphous silicon buffer. The Quasy-Steady-State Photoconductance (QSS-PC) technique allows us to estimate implicit open-circuit voltages near 700 mV for heterojunction emitters on p-type (0.8 Ω·cm) FZ silicon wafers. Finally, 1 cm 2 heterojunction solar cells with 15.4% conversion efficiencies (total area) have been fabricated on flat p-type (14 Ω·cm) CZ silicon wafers with aluminum back-surface-field contact.
Resumo:
SnO2 thin layers, prepared from aqueous colloidal suspensions by the sol-gel process, have been dip-coated on commercial borosilicate glasses. The effect of the conditions of deposition on the optical and structural characteristics of the thin layers was analysed by UV-Vis spectroscopy, x-ray reflectometry and electron scanning microscopy. Layers prepared with withdrawal speed in between 0.1 and 10cm/min show thickness smaller than 90nm, roughness of the order of 2nm and transmittance higher than 80%, resulting in good optical quality samples. The roughness increases from 2 to 11nm as the withdrawal speed increases from 10 to 80cm/min, what seems to be associated to the enlargement of the layers thickness (> 90nm). The measurements of mass loss, done after etching with fluoridric acid show that the coated samples are more corrosion resistant than the uncoated borosilicate glass.
Resumo:
The main objective of this research was the characterization of the humic fractions isolated from vermicomposting, originating from cattle manure and treated with Eisenea foetida or Lumbricus rubellus, during 3 and 6 months. Elemental analysis and Infrared and UV-vis spectroscopy were used for their characterizations. The results obtained shown that both humic acids are very similar, but six-month humic acid shown lower percentage of organic material than three month humic acid. The spectroscopy analysis shown that the humic acid studied can be compared with other humic acids reported in the literature. By comparing both vermicomposts, the one produced in three months presents a great potential as fertilizer and it is more economical than the vermicompost produced during a six month period.
Resumo:
Multicomponent ( Al2O3, CaO, SiO2, MgO) calcium aluminate-based glasses containing Nd3+ were prepared in order to evaluate their possibilities as laser host materials. The refractive index, UV-visible-near IR absorption spectrum, IR and visible luminescence spectra, and fluorescence decay time were measured. Judd-Ofelt model was used to obtain experimental intensity parameters ( omega2, omega4 and omega6), emission cross-section, radiative lifetimes, emission branching ratios and quantum efficiency.
Resumo:
Titanium dioxide was prepared by hydrolysis and polycondensation of titanium tetraisopropoxide. TiO2 films were obtained by spin coating of the precursor solution on ITO substractes (glass covered with indium doped tin oxide). Films were prepared using different temperatures and hydrochloric acid contents. The effect of the drying temperature of the films (100 or 400ºC) was also investigated. TiO2 films were characterized by cyclic voltammetry, chronoamperometry, ultraviolete-visible spectroscopy, scanning electron microscopy and X-ray diffractrometry.
Resumo:
The equilibria, the spectra and the identities of the species of Cr(VI) that are present in aqueous solution have long been an active subject of discussion in the literature. In this paper, three different chemometric methodologies are applied to sets of UV/Visible spectra of aqueous Cr(VI) solutions, in order to solve a chemical system where there is no available information concerning the composition of the samples nor spectral information about the pure species. Imbrie Q-mode factor analysis, followed by varimax rotation and Imbrie oblique projection, were used to estimate the composition of Cr(VI) equilibrium solutions and, by combining these results with the k-matrix method, to obtain the pure spectra of the species. Evolving factor analysis and self modeling curve resolution were used to confirm the number of the species and the resolution of the system, respectively. Sets of 3.3×10-4 and 3.3×10-5 mol L-1 Cr(VI) solutions, respectively, were analyzed in the pH range from 1 to 12. Two factors were identified, which were related to the chromate ion (CrO4(2-)) and bichromate ion (HCrO4-). The pK of the equilibrium was estimated as 5.8.
Resumo:
The present experiment describes the preparation, characterization of n-butyl(pyridil)cobaloxime complex and its electrochemical property. The infrared and uv-visible absorption spectra were used to characterize the complex obtained. The infrared spectrum of the compound showed characteristics bands that indicated the formation of the Co-C chemical bond formation. The electronic absorption spectrum in acetonitrile showed transition bands attributed to p-p*, metal-to-ligand charge transfer, d-d transitions and charge transfer Co-C. The electrochemical property was investigated by the pulse differential voltammetry technique. Two oxidation processes: Co(I)/Co(II) at -423 mV and Co(II)/Co(III) at 752 mV were observed.
Resumo:
An undergraduate organic lab experiment is described based on the preparation of two readily accessible hydrazones. The UV-visible spectra of these N-H acids and of their conjugate bases are employed to illustrate the importance of through-conjugation in determining their acid strength and their internal charge-transfer-band transitions.
Resumo:
The composition and biological activities of propolis, a resinous hive product collected by honeybees from various plant sources, depends on various factors such as season and vegetation of the area. The aim of this study was to evaluate the influence of the seasonal effect on the ethanolic extracts of Brazilian propolis (EEP) type 6 and type 12, collected during 6 months in terms of antibacterial activity and phenolic composition. The antimicrobial properties were evaluated by MIC and MBC on S. mutans Ingbritt 1600 and the profile of chemical composition by UV-visible spectrophotometry, HPLC-RF and GC-MS. The results demonstrated that the season in which propolis is collected influences its chemical composition, resulting in modifications in its antibacterial activity.
Resumo:
Stratospheric ozone can be measured accurately using a limb scatter remote sensing technique at the UV-visible spectral region of solar light. The advantages of this technique includes a good vertical resolution and a good daytime coverage of the measurements. In addition to ozone, UV-visible limb scatter measurements contain information about NO2, NO3, OClO, BrO and aerosols. There are currently several satellite instruments continuously scanning the atmosphere and measuring the UVvisible region of the spectrum, e.g., the Optical Spectrograph and Infrared Imager System (OSIRIS) launched on the Odin satellite in February 2001, and the Scanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY) launched on Envisat in March 2002. Envisat also carries the Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument, which also measures limb-scattered sunlight under bright limb occultation conditions. These conditions occur during daytime occultation measurements. The global coverage of the satellite measurements is far better than any other ozone measurement technique, but still the measurements are sparse in the spatial domain. Measurements are also repeated relatively rarely over a certain area, and the composition of the Earth’s atmosphere changes dynamically. Assimilation methods are therefore needed in order to combine the information of the measurements with the atmospheric model. In recent years, the focus of assimilation algorithm research has turned towards filtering methods. The traditional Extended Kalman filter (EKF) method takes into account not only the uncertainty of the measurements, but also the uncertainty of the evolution model of the system. However, the computational cost of full blown EKF increases rapidly as the number of the model parameters increases. Therefore the EKF method cannot be applied directly to the stratospheric ozone assimilation problem. The work in this thesis is devoted to the development of inversion methods for satellite instruments and the development of assimilation methods used with atmospheric models.
Resumo:
This paper reports on the development of a simple and fast procedure for β-carotene extraction from carrots and its quantification by UV/Vis spectroscopy. Carotenoids extracted from carrots may also be used as alternative reagents for TLC (thin layer chromatography) detection of natural compounds with antioxidant properties, replacing the commercial p.a. grade β-carotene. Although this reagent had around 10% b-carotene, it proved to be as efficient for TLC analysis as the commercial p.a. grade β-carotene. This practice is a useful alternative for teaching undergraduate organic chemistry laboratory classes.